FO model checking on graphs of bounded twinwidth

Eunjung KIM, LAMSADE / CNRS, Université Paris-Dauphine

20 èmes Journées de Combinatoire et d'Algorithmes du Littoral Méditerranéen
(JCALM'23)
13 December 2023, Montpellier, France

Contraction in a trigraph

Trigraph has three types of adjacency: (black) edge, non-edge, red edge Identification of two vertices, not-necessarily adjacent

- edges with $N(u) \triangle N(v)$ turn red
- red edges stay red

Contraction Sequence

A contraction sequence of $G=$
a sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{1}=$ single-vertex graph such that G_{i} is obtained from G_{i+1} by one contraction

Contraction Sequence

A d-contraction sequence of $G=$
a sequence of trigraphs $G=G_{n}, G_{n-1}, \ldots, G_{1}=$ single-vertex graph such that G_{i} is obtained from G_{i+1} by one contraction and the max red degree of each G_{i} is at most d.

2-contraction sequence

Twin-width of a graph

Twin-width of $\mathrm{G}=$
the smallest d s.t. \exists d-contraction sequence of G.

What is the (upper-bound of) twin-width of ...

- clique?
- disjoint union of G and H ?
- complete join of G and H ?
- cograph?
- path?
- tree?
- planar graphs?

Trees

If possible, contract two twin leaves

Trees

If not, contract a deepest leaf with its parent

Trees

If not, contract a deepest leaf with its parent

Trees

If possible, contract two twin leaves

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Trees

Generalization to bounded treewidth and even bounded rank-width

Grids

4-sequence for planar grids

Graph classes of small twin-width [Bonnet, Geniat, K, Thomassé, Watrigant '20, '21]

- trees, graphs of bounded tree-width
- bounded clique-width (rank-width) graphs
- unit interval graphs
- strong products of two graphs of bounded tww, one with bounded degree
- $\Omega(\log n)$-subdivision of all n-vertex graphs, etc.
-(subgraphs of) d-dimensional grids
- K_{t}-free unit ball graphs in dimension d
- hereditary proper subclass of permutation graphs
- posets of bounded antichain size
- K_{t}-minor-free graphs
- square of planar graphs
- map graphs
- k-planar graphs
- bounded degree string graphs

Graph classes of small twin-width [Bonnet, Geniat, K, Thomassé, Watrigant '20, '21]

- trees, graphs of bounded tree-width
- bounded clique-width (rank-width) graphs
- unit interval graphs
- strong products of two graphs of bounded tww, one with bounded degree
- $\Omega(\log n)$-subdivision of all n-vertex graphs, etc.
- (subgraphs of) d-dimensional grids
- K_{t}-free unit ball graphs in dimension d
- hereditary proper subclass of permutation graphs
- posets of bounded antichain size
- K_{t}-minor-free graphs
- square of planar graphs
- map graphs
- k-planar graphs
- bounded degree string graphs

The class of all cubic graphs have unbounded twin-width
given two bags:

it means in the original graph:

no edge

all edges

at least one edge, at least one non-edge

2-partition sequence

Twin-width of a graph

A d-contraction sequence of $G=$
a sequence of partitions
$\mathscr{P}_{n}=\{\{v\}: v \in V(G)\}, \mathscr{P}_{n-1}, \ldots, \mathscr{P}_{i}, \ldots, \mathscr{P}_{1}=\{V(G)\}$ such that \mathscr{P}_{i} is obtained from P_{i+1} by merging two parts and the max red degree of each quotient graph G / \mathscr{P}_{i} is at most d.

Twin-width of $\mathrm{G}=$
the smallest d s.t. $\exists \mathrm{d}$-partition sequence of G .
[Bonnet, K, Thomassé, Watrigant '20]

FO model checking can be done in time $f(d,|\phi|) \cdot n$ when a d-contraction sequence is given.

[Bonnet, K, Thomassé, Watrigant '20]

Input: a graph G, first-order sentence ϕ. Question: $\mathrm{G} \vDash \phi$?

 FO model checking can

 FO model checking can be done in time $\mathrm{f}(\mathrm{d},|\boldsymbol{\phi}|) \cdot \mathrm{n}$ be done in time $\mathrm{f}(\mathrm{d},|\boldsymbol{\phi}|) \cdot \mathrm{n}$ when a d-contraction sequence is given.

$$
\begin{aligned}
& \Phi:=\exists x_{1} \exists x_{2} \cdots \exists x_{k} \forall u \bigvee_{1 \leq i \leq k}\left(\left(x_{i}=u\right) \vee E\left(x_{i}, u\right)\right) \\
& \leadsto \mathrm{G} \models \Phi \text { iff } \mathrm{G} \text { has a dominating set of size } \mathrm{k} .
\end{aligned}
$$

FO-model checking is FP' $_{\left[B K T W^{20]}\right.}$

dense classes

$\underbrace{\text { Guillemot, Marx ' } 14}$| permutations |
| :---: |
| avoiding a fixed |
| pattern |${ }^{\text {G }}$

Grohe, Kreutzer, Siebertz'17 sparse classes

FO-model checking is FP' $_{\left[B K T W^{20]}\right.}$

FO model checking algorithm when a dpartition sequence is given

Prenex Normal Form

$$
\varphi=Q_{1} x_{1} Q_{2} x_{2} \cdots Q_{\ell} x_{\ell} \phi^{*}
$$

- each Q_{i} is a non-negated quantifier (\forall, \exists)
- ϕ^{*} is a quantifier-free sentence; a boolean combination of $\left(x_{i}=x_{j}\right)$ and $E\left(x_{i}, x_{j}\right)$
- Any FO-sentence of quantifier rank q can be rewritten as a prenex sentence of depth $f(q)$ for some f.
- We assume that the FO sentence we want to test is given in prenex form.

ℓ-Morphism Tree (Game tree) in G

$$
\varphi=\exists x_{1} \forall x_{2} \exists x_{3}\left(x_{1}=x_{2} \vee E\left(x_{2}, x_{3}\right)\right)
$$

- all possible ℓ-tuples of vertices can be described as a game tree rooted at ε, called a complete ℓ-morphism tree $M T_{\ell}(G)$.
- For any prenex sentence φ of depth $\ell, G \vDash \varphi$ can be tested using $M T_{\ell}(G)$.

Testing $G \vDash \varphi$ using $M T_{\ell}(G)$

$$
\varphi=\exists x_{1} \forall x_{2} \exists x_{3}\left(x_{1}=x_{2} \vee E\left(x_{2}, x_{3}\right)\right)
$$

- $M T_{\ell}(G)$ has size n^{ℓ}. Let's reduce the size to make it more useful.

(Full) Reduction of ℓ-Morphism Tree

Full Reduction $M T_{\ell}^{\prime}(G)$ of ℓ-Morphism Tree $M T_{\ell}(G)$

- The size of a full reduction $M T_{\ell}^{\prime}(G)$ is bounded by a function of ℓ.
- If $M T_{\ell}^{\prime}\left(G_{1}\right)=M T_{\ell}^{\prime}\left(G_{2}\right) \rightarrow G_{1}$ and G_{2} satisfies precisely the same set of prenex FO sentences of depth $\leq \ell$.
- In general, we cannot compute $M T_{\ell}^{\prime}(G)$ efficiently.
- We show that $M T_{\ell}^{\prime}(G)$ can be computed in time $f(d, \ell) \cdot n$ when a d-partition sequence is given.

Strategy: first attempt

Maintain $M T_{t}^{\prime}(G[X])$ per part $X \in \mathscr{P}$

- Following the d-partition sequence $\mathscr{P}_{n}, \cdots, \mathscr{P}_{1}$
- At \mathscr{P}_{i} : maintain the list of $M T_{l}^{\prime}(G[X])$ for each $X \in \mathscr{P}_{i}$
- At $\mathscr{P}_{1}=\{V\}: M T_{\ell}^{\prime}(G[V])=M T_{\ell}^{\prime}(G)$

Strategy: first attempt

Maintain $M T_{\ell}^{\prime}(G[X])$ per part $X \in \mathscr{P}$

$M T_{\ell}\left(G_{1}\right)$

$M T_{\ell}(G)$ can be obtained by "shuffling" all pairs of root-to-leaf paths and arranging them by prefix relations, then truncate all nodes of depth $>\ell$.

Strategy: first attempt

Maintain $M T_{\ell}^{\prime}(G[X])$ per part $X \in \mathscr{P}$

$M T_{\ell}\left(G_{1}\right)$

$M T_{\ell}(G)$ can be obtained by "shuffling" all pairs of root-to-leaf paths and arranging them by prefix relations, then truncate all nodes of depth $>\ell$.

Strategy: first attempt

Maintain $M T_{t}^{\prime}(G[X])$ per part $X \in \mathscr{P}$

$M T_{\ell}^{\prime}\left(G_{1}\right)$

With ℓ-shuffle of (fully reduced) $M T_{\ell}^{\prime}\left(G_{1}\right)$ and $M T_{\ell}^{\prime}\left(G_{2}\right)$, do we not lose information? That is, ℓ-shuffle of $M T_{\ell}^{\prime}\left(G_{1}\right)$ and $M T_{\ell}^{\prime}\left(G_{2}\right)$ is a reduction of $M T_{\ell}(G)$? Yes, if it is fully (non-)adjacent between $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$.

Strategy: first attempt

Maintain $M T_{t}^{\prime}(G[X])$ per part $X \in \mathscr{P}$

$M T_{\ell}^{\prime}\left(G_{1}\right)$

With ℓ-shuffle of (fully reduced) $M T_{\ell}^{\prime}\left(G_{1}\right)$ and $M T_{\ell}^{\prime}\left(G_{2}\right)$, do we not lose information? That is, ℓ-shuffle of $M T_{\ell}^{\prime}\left(G_{1}\right)$ and $M T_{\ell}^{\prime}\left(G_{2}\right)$ is a reduction of $M T_{\ell}(G)$? Yes, if it is fully (non-)adjacent between $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$.

Strategy: first attempt

 Maintain $M T_{t}^{\prime}(G[X])$ per part $X \in \mathscr{P}$" ℓ-shuffle" $M T_{\ell}^{\prime}\left(G_{1}\right)$ and $M T_{\ell}^{\prime}\left(G_{2}\right)$ and reduce the obtained ℓ-morphism tree.
\rightarrow By doing this, we do not lose any information for $M T_{\ell}\left(G_{1} \oplus G_{2}\right)$ (or $M T_{\ell}\left(G_{1} \otimes G_{2}\right)$.
\rightarrow i.e. ℓ-shuffle of $M T_{\ell}^{\prime}\left(G_{1}\right)$ and $M T_{\ell}^{\prime}\left(G_{2}\right)$ is a reduction of the full morphism-tree $M T_{\ell}(G)$
\rightarrow This works for 0-partition sequence (i.e. cographs, but not with d-partition sequence in general.

Strategy

Maintain $M T_{t}^{\prime}(G, \mathscr{P}, X)$ per part $X \in \mathscr{P}$
$M T_{\ell}(G, \mathscr{P}, X)$ concerns only the game move $\left(a_{1}, \ldots, a_{\ell}\right)$ in $\left(X_{1}, \ldots, X_{\ell}\right) \in \mathscr{P}^{\ell}$ s.t.

- $X_{1}=X$
- $\operatorname{dist}_{G_{\mathscr{P}}}\left(X, X_{i}\right) \leq 3^{\ell}$ (minus some technical condition to guarantee an efficient update of the $M T_{\ell}^{\prime}(G, \mathscr{P}, X)$'s after contraction)

To reduce to $M T_{\ell}^{\prime}(G, \mathscr{P}, X)$, the isomorphism between two siblings take into account the membership in parts of \mathscr{P}.

The size of $M T_{\ell}^{\prime}(G, \mathscr{P}, X)$ is bounded by some function $h(\ell, d)$ as the number of distinct parts in the radius 3^{ℓ}-ball centered at X is bounded ($\leq d^{3^{\ell}}+1$).

Strategy: update from \mathscr{P}_{i+1} to \mathscr{P}_{i}

Maintain $M T_{t}^{\prime}(G, \mathscr{P}, X)$ per part $X \in \mathscr{P}$
$X_{u}, X_{v} \in \mathscr{P}_{i+1}$ are merged to form a part X_{z}, to yield \mathscr{P}_{i}

$G_{\mathscr{P}_{i+1}}$ induced by the ball R

radius- 3^{ℓ} ball R
centered at $X_{1} \cup X_{2}$ in the red graph $G_{\mathscr{P}_{i}}$

Strategy: update from \mathscr{P}_{i+1} to \mathscr{P}_{i}

Maintain $M T_{t}^{\prime}(G, \mathscr{P}, X)$ per part $X \in \mathscr{P}$

radius- 3^{ℓ} ball R centered at $X_{1} \cup X_{2}$ in the red graph $G_{\mathscr{P}_{i}}$

To compute $M T_{\ell}^{\prime}\left(G, \mathscr{P}_{i}, W\right)$, we ℓ-shuffle over the parts Z in R 'sufficiently far' from W in $G_{\mathscr{R}_{i+1}}$:
the information from $M T_{\ell}^{\prime}\left(G, \mathscr{P}_{i+1}, Z\right)$ for Z close to W are already implemented in $M T_{\ell}^{\prime}\left(G, \mathscr{P}_{i+1}, W\right)$.

Recap of FO model checking algorithm

For φ in prenex form of depth ℓ; almost true version

- Follow the d-partition sequence $\mathscr{P}_{n}, \mathscr{P}_{n-1}, \ldots, \mathscr{P}_{1}$.
- Initialization for $\mathscr{P}_{n}: G_{\mathscr{P}_{n}}$ is edgeless. The fully reduced ℓ-morphism tree $M T_{\ell}^{\prime}\left(G, \mathscr{P}_{n},\{v\}\right)$ is a length- ℓ path, each node corresponding to (v), $(v, v), \cdots$ and (v, \ldots, v)
- Assume for $\mathscr{P}_{i+1}: M T_{\ell}^{\prime}\left(G, \mathscr{P}_{i+1}, X\right)$ is given for each $X \in \mathscr{P}_{i+1}$
- $\mathscr{P}_{i}=\mathscr{P}_{i+1} \backslash\left\{X_{1}, X_{2}\right\} \cup\left\{X_{1} \cup X_{2}\right\}:$
- $R=N_{G_{\mathscr{P}_{i}}}^{3^{\ell}}\left(X_{1} \cup X_{2}\right)$
- If $Y \notin R: M T_{\ell}^{\prime}\left(G, \mathscr{P}_{i}, X\right):=M T_{\ell}^{\prime}\left(G, \mathscr{P}_{i+1}, X\right)$
- If $Y \in R: M T_{\ell}^{\prime}\left(G, \mathscr{P}_{i}, Z\right)$ is the ℓ-shuffle of all $M T_{\ell}^{\prime}\left(G, \mathscr{P}_{i}, W\right)$ for $W \in R$ which was far from Z in $G_{\mathscr{P}_{i+1}}$.
- Check φ on $M T_{\ell}^{\prime}\left(G, \mathscr{P}_{1}, V(G)\right)$.

Example: k-Independent Set

T

Example: k-Independent Set

T

For any partial solution S realizing T, three possibilities:
(a) $T \cap G_{i+1}(u)=\varnothing$, (b) $T \cap G_{i+1}(v)=\varnothing$, (c) both sets non-empty.

Assuming that no realizable set of size $\geq \mathrm{k}$ was found so far,
\rightarrow Best partial solution S realizing T, induces connected red components of $\mathrm{T}-\mathrm{z}+\mathrm{u}, \mathrm{T}-\mathrm{z}+\mathrm{v}$, or $\mathrm{T}-\mathrm{z}+\{\mathrm{u}, \mathrm{v}\}$ of size at most k each.

Assuming that no realizable set of size $\geq \mathrm{k}$ was found so far,
\rightarrow Best partial solution S realizing T, induces connected red components of $\mathrm{T}-\mathrm{z}+\mathrm{u}, \mathrm{T}-\mathrm{z}+\mathrm{v}$, or $\mathrm{T}-\mathrm{z}+\{\mathrm{u}, \mathrm{v}\}$ of size at most k each.

In a graph of max degree $\leq \mathrm{d}$, there are at most $\left(d^{2 k-2}+1\right)|X|$ connected sets of size at most k containing a set X.

FO-model checking is FP' $_{\left[B K T W^{20]}\right.}$

dense classes

$\underbrace{\text { Guillemot, Marx ' } 14}$| permutations |
| :---: |
| avoiding a fixed |
| pattern |${ }^{\text {G }}$

Grohe, Kreutzer, Siebertz'17 sparse classes

FO-model checking is FP' $_{\left[B K T W^{20]}\right.}$

Map of the universe

monadically stable $\xrightarrow{\subseteq}$ monadically NIP

Twin

For a hereditary class \mathscr{C} [Bonnet, K, Thomassé, Watrigant '20]

\mathscr{C} has bounded twin-width

\mathscr{C} < does NOT contain a large mixed minor
\mathscr{C} does NOT FO-transduce all graphs

Summary II

For a hereditary class \mathscr{C} of interval graphs | permutations | ordered graphs | tournaments | circle graphs | rooted directed path graphs

Concluding Remarks

- For all the classes which are known to have bounded twin-width, we known how to compute the (approximate) contraction sequence in time $f(d) \cdot n$.
- We still do not know how to compute f(tww)-contraction sequence in FPT, even in XP time, when the input graph is arbitrary. $O(\sqrt{n} \cdot \log n)$-approximation (?) is recently obtained.

Concluding Remarks

- For all the classes which are known to have bounded twin-width, we known how to compute the (approximate) contraction sequence in time $f(d) \cdot n$.
- We still do not know how to compute f(tww)-contraction sequence in FPT, even in XP time, when the input graph is arbitrary. $O(\sqrt{n} \cdot \log n)$-approximation (?) is recently obtained.
- Characterizing the hereditary classes on which FO model checking is in FPT is a very active topic recently.
Conjecture: FO model checking on \mathscr{C} is FPT if and only if \mathscr{C} does not transduce the class of all graphs (a.k.a. monadic NIP). Just a few weeks ago, a combinatorial characterization of monadic NIP class was announced, perhaps we're just a few steps from the conjecture to be confirmed.

Thank you!

