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Contraction in a trigraph

Identification of two vertices, not-necessarily adjacent 

• edges with  turn red


• red edges stay red

N(u) △ N(v)

Trigraph has three types of adjacency: (black) edge, non-edge, red edge



Contraction Sequence

A     contraction sequence of G =  
 

a sequence of trigraphs = single-vertex graph 

such that  is obtained from  by one contraction

G = Gn, Gn−1, …, G1
Gi Gi+1



Contraction Sequence

A     contraction sequence of G =  
 

a sequence of trigraphs = single-vertex graph 

such that  is obtained from  by one contraction

G = Gn, Gn−1, …, G1
Gi Gi+1

and the max red degree of each  is at most d.Gi

d-



2-contraction sequence



Twin-width of a graph

Twin-width of G =


the smallest d s.t.  d-contraction sequence of G.∃



What is the (upper-bound of) twin-width 
of … 

• clique? 
• disjoint union of G and H? 
• complete join of G and H? 
• cograph? 
• path? 
• tree? 
• planar graphs?



Trees

If possible, contract two twin leaves



Trees

If not, contract a deepest leaf with its parent



Trees

If not, contract a deepest leaf with its parent



Trees

If possible, contract two twin leaves



Trees

Cannot create a red degree-3 vertex
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Trees

Cannot create a red degree-3 vertex



Trees

Generalization to bounded treewidth and even bounded rank-width



Grids

4-sequence for planar grids
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4-sequence for planar grids



Graph classes of small twin-width

•trees, graphs of bounded tree-width

•bounded clique-width (rank-width) graphs

•unit interval graphs

•strong products of two graphs of bounded tww, one with bounded 
degree

• -subdivision of all -vertex graphs, etc.

• (subgraphs of) d-dimensional grids

• -free unit ball graphs in dimension d

•hereditary proper subclass of permutation graphs

•posets of bounded antichain size

• -minor-free graphs

•square of planar graphs

•map graphs

• -planar graphs 

•bounded degree string graphs

Ω(log n) n

Kt

Kt

k

[Bonnet, Geniat, K, Thomassé, Watrigant ’20, ’21]



Graph classes of small twin-width

•trees, graphs of bounded tree-width

•bounded clique-width (rank-width) graphs

•unit interval graphs

•strong products of two graphs of bounded tww, one with bounded 
degree

• -subdivision of all -vertex graphs, etc.

• (subgraphs of) d-dimensional grids

• -free unit ball graphs in dimension d

•hereditary proper subclass of permutation graphs

•posets of bounded antichain size

• -minor-free graphs

•square of planar graphs

•map graphs

• -planar graphs 

•bounded degree string graphs

Ω(log n) n

Kt

Kt

k The class of all cubic graphs have 
unbounded twin-width

[Bonnet, Geniat, K, Thomassé, Watrigant ’20, ’21]



4/20

given two bags:

it means in the original graph:

no edge all edges at least one edge,
at least one non-edge



2-partition sequence



Twin-width of a graph

Twin-width of G =


the smallest d s.t.  d-partition sequence of G.∃

A d-contraction sequence of G =  
 

a sequence of partitions 
 such that  is 

obtained from  by merging two parts
𝒫n = {{v} : v ∈ V(G)}, 𝒫n−1, …, 𝒫i, …, 𝒫1 = {V(G)} 𝒫i

Pi+1
and the max red degree of each quotient graph  is at most d.G/𝒫i



FO model checking can 
be done in time f(d,|φ|)∙n
when a d-contraction sequence is given.

[Bonnet, K, Thomassé, Watrigant ’20]



FO model checking can 
be done in time f(d,|φ|)∙n
when a d-contraction sequence is given.

Input: a graph G, first-order sentence φ. 
Question: G ⊨ φ?

 

⤳ G ⊨ Φ iff G has a dominating set of size k.

Φ := ∃x1 ∃x2⋯∃xk ∀u ⋁
1≤i≤k

((xi = u) ∨ E(xi, u))

[Bonnet, K, Thomassé, Watrigant ’20]



unit interval 
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FO model checking 
algorithm when a d-

partition sequence is given



Prenex Normal Form 

φ = Q1x1Q2x2⋯Qℓxℓϕ*

• each  is a non-negated quantifier ( )


•  is a quantifier-free sentence; a boolean combination of 
 and 


• Any FO-sentence of quantifier rank  can be rewritten as a prenex 
sentence of depth  for some .


• We assume that the FO sentence we want to test is given in 
prenex form.

Qi ∀, ∃

ϕ*
(xi = xj) E(xi, xj)

q
f(q) f



-Morphism Tree (Game tree) in  ℓ G
φ = ∃x1 ∀x2 ∃x3(x1 = x2 ∨ E(x2, x3))

• all possible -tuples of vertices can be described as a game tree 
rooted at , called a complete -morphism tree .


• For any prenex sentence  of depth ,  can be tested using 
.

ℓ
ε ℓ MTℓ(G)

φ ℓ G ⊧ φ
MTℓ(G)



Testing  using G ⊧ φ MTℓ(G)
φ = ∃x1 ∀x2 ∃x3(x1 = x2 ∨ E(x2, x3))

•  has size . Let’s reduce the size to make it more useful.MTℓ(G) nℓ



(Full) Reduction of -Morphism Treeℓ
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(Full) Reduction of -Morphism Treeℓ



Full Reduction  of -Morphism Tree MT′ ℓ(G) ℓ MTℓ(G)

• The size of a full reduction  is bounded by a 
function of .


• If  ➔  and  satisfies 
precisely the same set of prenex FO sentences of 
depth .

MT′ ℓ(G)
ℓ

MT′ ℓ(G1) = MT′ ℓ(G2) G1 G2

≤ ℓ



• In general, we cannot compute  
efficiently.  

• We show that  can be computed in time
 when a d-partition sequence is given.

MT′ ℓ(G)

MT′ ℓ(G)
f(d, ℓ) ⋅ n



Strategy: first attempt
Maintain  per part MT′ ℓ(G[X]) X ∈ 𝒫

• Following the -partition sequence 


• At : maintain the list of  for each 



• At : 

d 𝒫n, ⋯, 𝒫1

𝒫i MT′ ℓ(G[X])
X ∈ 𝒫i

𝒫1 = {V} MT′ ℓ(G[V]) = MT′ ℓ(G)



Strategy: first attempt
Maintain  per part MT′ ℓ(G[X]) X ∈ 𝒫

MTℓ(G1) MTℓ(G2)

….

 can be obtained by “shuffling” all pairs of 

root-to-leaf paths and arranging them by prefix relations, then 

truncate all nodes of depth .

MTℓ(G)

> ℓ



Strategy: first attempt
Maintain  per part MT′ ℓ(G[X]) X ∈ 𝒫

MTℓ(G1) MTℓ(G2)

….

 can be obtained by “shuffling” all pairs of 

root-to-leaf paths and arranging them by prefix relations, then 

truncate all nodes of depth .

MTℓ(G)

> ℓ



Strategy: first attempt
Maintain  per part MT′ ℓ(G[X]) X ∈ 𝒫

MT′ ℓ(G1) MT′ ℓ(G2)

….

With -shuffle of (fully reduced)  and , 

do we not lose information? That is,


-shuffle of  and  is a reduction of ?

Yes, if it is fully (non-)adjacent between  and .

ℓ MT′ ℓ(G1) MT′ ℓ(G2)

ℓ MT′ ℓ(G1) MT′ ℓ(G2) MTℓ(G)
V(G1) V(G2)



Strategy: first attempt
Maintain  per part MT′ ℓ(G[X]) X ∈ 𝒫

MT′ ℓ(G1) MT′ ℓ(G2)

….

With -shuffle of (fully reduced)  and , 

do we not lose information? That is,


-shuffle of  and  is a reduction of ?

Yes, if it is fully (non-)adjacent between  and .

ℓ MT′ ℓ(G1) MT′ ℓ(G2)

ℓ MT′ ℓ(G1) MT′ ℓ(G2) MTℓ(G)
V(G1) V(G2)



Strategy: first attempt

“ -shuffle”  and  and reduce the 
obtained -morphism tree.

➔ By doing this, we do not lose any information for 

 (or .


➔ i.e. -shuffle of  and   is a 
reduction of the full morphism-tree 

➔ This works for 0-partition sequence (i.e. cographs, 
but not with -partition sequence in general.

ℓ MT′ ℓ(G1) MT′ ℓ(G2)
ℓ

MTℓ(G1 ⊕ G2) MTℓ(G1 ⊗ G2)
ℓ MT′ ℓ(G1) MT′ ℓ(G2)

MTℓ(G)

d

Maintain  per part MT′ ℓ(G[X]) X ∈ 𝒫



Strategy

 concerns only the game move  in 
 s.t.


• 


•  (minus some technical condition to guarantee an efficient 
update of the ’s after contraction)


To reduce to , the isomorphism between two siblings take into 
account the membership in parts of .


The size of  is bounded by some function  as the number 
of distinct parts in the radius -ball centered at  is bounded ( ).

MTℓ(G, 𝒫, X) (a1, …, aℓ)
(X1, …, Xℓ) ∈ 𝒫ℓ

X1 = X
𝖽𝗂𝗌𝗍G𝒫(X, Xi) ≤ 3ℓ

MT′ ℓ(G, 𝒫, X)

MT′ ℓ(G, 𝒫, X)
𝒫

MT′ ℓ(G, 𝒫, X) h(ℓ, d)
3ℓ X ≤ d3ℓ + 1

Maintain  per part MT′ ℓ(G, 𝒫, X) X ∈ 𝒫



Strategy: update from  to 𝒫i+1 𝒫i
Maintain  per part MT′ ℓ(G, 𝒫, X) X ∈ 𝒫

 are merged to form a part  , to yield Xu, Xv ∈ 𝒫i+1 Xz 𝒫i

radius-  ball R

centered at  in the red graph 

3ℓ

X1 ∪ X2 G𝒫i

 induced by the ball RG𝒫i+1



Strategy: update from  to 𝒫i+1 𝒫i
Maintain  per part MT′ ℓ(G, 𝒫, X) X ∈ 𝒫

radius-  ball R centered at  in the red graph 3ℓ X1 ∪ X2 G𝒫i

Y

X1

X2 for the parts  in the ball R,  
 needs to be recomputed  

because -ball centered at W might have 
changed in  even if 

W
MT′ ℓ(G, 𝒫, W )

3ℓ

G𝒫i
W ≠ X1 ∪ X2

W

To compute , we -shuffle over the parts Z in R 

‘sufficiently far’ from W in :


the information from  for Z close to W are already implemented 

in .

MT′ ℓ(G, 𝒫i, W ) ℓ
G𝒫i+1

MT′ ℓ(G, 𝒫i+1, Z)
MT′ ℓ(G, 𝒫i+1, W )

 

for  


which is -away from  in 

MT′ ℓ(G, 𝒫i, Y ) = MT′ ℓ(G, 𝒫i+1, Y )
Y ∈ 𝒫i

3ℓ X1 ∪ X2 G𝒫i



Recap of FO model checking algorithm

• Follow the -partition sequence .


• Initialization for :  is edgeless. The fully reduced -morphism tree 
 is a length-  path, each node corresponding to 

 and 


• Assume for :  is given for each 


• : 


•  


• If : 


• If :  is the -shuffle of all  for 
 which was far from  in .


• Check  on .

d 𝒫n, 𝒫n−1, …, 𝒫1

𝒫n G𝒫n
ℓ

MT′ ℓ(G, 𝒫n, {v}) ℓ
(v), (v, v), ⋯ (v, …, v)

𝒫i+1 MT′ ℓ(G, 𝒫i+1, X) X ∈ 𝒫i+1

𝒫i = 𝒫i+1∖{X1, X2} ∪ {X1 ∪ X2}

R = N3ℓ

G𝒫i
(X1 ∪ X2)

Y ∉ R MT′ ℓ(G, 𝒫i, X) := MT′ ℓ(G, 𝒫i+1, X)
Y ∈ R MT′ ℓ(G, 𝒫i, Z) ℓ MT′ ℓ(G, 𝒫i, W )

W ∈ R Z G𝒫i+1

φ MT′ ℓ(G, 𝒫1, V(G))

For  in prenex form of depth ; almost true versionφ ℓ



T

Example: -Independent Setk



T

For any partial solution S realizing T, three possibilities:  

(a) , (b) , (c) both sets non-empty.T ∩ Gi+1(u) = ∅ T ∩ Gi+1(v) = ∅

Example: -Independent Setk





Assuming that no realizable set of size ≥ k was found so far, 

➔ Best partial solution S realizing T, induces connected red components of  
T-z+u, T-z+v, or T-z+{u,v} of size at most k each.



Assuming that no realizable set of size ≥ k was found so far, 

➔ Best partial solution S realizing T, induces connected red components of  
T-z+u, T-z+v, or T-z+{u,v} of size at most k each.

In a graph of max degree ≤ d,  
there are at most  connected sets of size at most k  

containing a set X.
(d2k−2 + 1) |X |
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Borrowed from Sebastian Siebertz’s slides



Twin

FO model-checking is FPT on 𝒞

For a hereditary class 𝒞

 has bounded twin-width𝒞

 does NOT contain a large mixed minor𝒞≺

 does NOT FO-transduce all graphs𝒞

[Bonnet, K, Thomassé, Watrigant ’20]

BS’85, DFT’96,



Summary II

FO model-checking is FPT on 𝒞

For a hereditary class  of interval graphs | permutations | ordered graphs 
| tournaments | circle graphs | rooted directed path graphs

𝒞

 has bounded twin-width𝒞

 does NOT contain a large mixed minor𝒞

 does NOT FO-transduce all graphs𝒞



• For all the classes which are known to have bounded twin-width, 
we known how to compute the (approximate) contraction 
sequence in time .


• We still do not know how to compute f(tww)-contraction 
sequence in FPT, even in XP time, when the input graph is 
arbitrary. -approximation (?) is recently obtained.

f(d) ⋅ n

O( n ⋅ log n)

Concluding Remarks



• For all the classes which are known to have bounded twin-width, 
we known how to compute the (approximate) contraction 
sequence in time .


• We still do not know how to compute f(tww)-contraction 
sequence in FPT, even in XP time, when the input graph is 
arbitrary. -approximation (?) is recently obtained.

f(d) ⋅ n

O( n ⋅ log n)

Concluding Remarks

• Characterizing the hereditary classes on which FO model 
checking is in FPT is a very active topic recently.  
Conjecture: FO model checking on  is FPT if and only if  
does not transduce the class of all graphs (a.k.a. monadic NIP). 
Just a few weeks ago, a combinatorial characterization of 
monadic NIP class was announced, perhaps we’re just a few 
steps from the conjecture to be confirmed.

𝒞 𝒞



Thank you!


