FO model checking on graphs of bounded twin-width

Eunjung KIM, LAMSADE / CNRS, Université Paris-Dauphine

20èmes Journées de Combinatoire et d'Algorithmes du Littoral Méditerranéen (JCALM'23) 13 December 2023, Montpellier, France

Contraction in a trigraph

Trigraph has three types of adjacency: (black) edge, non-edge, red edge Identification of two vertices, not-necessarily adjacent

- edges with $N(u) \bigtriangleup N(v)$ turn red
- red edges stay red

Contraction Sequence

A contraction sequence of G =

a sequence of trigraphs $G = G_n, G_{n-1}, \dots, G_1$ = single-vertex graph such that G_i is obtained from G_{i+1} by one contraction

Contraction Sequence

A d-contraction sequence of G =

a sequence of trigraphs $G = G_n, G_{n-1}, \dots, G_1$ = single-vertex graph such that G_i is obtained from G_{i+1} by one contraction and the max red degree of each G_i is at most d.

2-contraction sequence

Twin-width of a graph

Twin-width of G =

the smallest d s.t. \exists d-contraction sequence of G.

What is the (upper-bound of) twin-width of ...

- clique?
- disjoint union of G and H?
- complete join of G and H?
- cograph?
- path?
- tree?
- planar graphs?

If possible, contract two twin leaves

If not, contract a deepest leaf with its parent

If not, contract a deepest leaf with its parent

If possible, contract two twin leaves

Generalization to bounded treewidth and even bounded rank-width

Grids

4-sequence for planar grids

Graph classes of small twin-width [Bonnet, Geniat, K, Thomassé, Watrigant '20, '21]

- trees, graphs of bounded tree-width
- bounded clique-width (rank-width) graphs
- unit interval graphs
- strong products of two graphs of bounded tww, one with bounded degree
- $\Omega(\log n)$ -subdivision of all *n*-vertex graphs, etc.
- (subgraphs of) d-dimensional grids
- K_t -free unit ball graphs in dimension d
- hereditary proper subclass of permutation graphs
- posets of bounded antichain size
- K_t -minor-free graphs
- square of planar graphs
- map graphs
- k-planar graphs
- bounded degree string graphs

Graph classes of small twin-width [Bonnet, Geniat, K, Thomassé, Watrigant '20, '21]

- trees, graphs of bounded tree-width
- bounded clique-width (rank-width) graphs
- unit interval graphs
- strong products of two graphs of bounded tww, one with bounded degree
- $\Omega(\log n)$ -subdivision of all *n*-vertex graphs, etc.
- (subgraphs of) d-dimensional grids
- K_t -free unit ball graphs in dimension d
- hereditary proper subclass of permutation graphs
- posets of bounded antichain size
- K_t -minor-free graphs
- square of planar graphs
- map graphs
- k-planar graphs
- bounded degree string graphs

The class of all cubic graphs have unbounded twin-width

given two bags:

it means in the original graph:

2-partition sequence

Twin-width of a graph

A d-contraction sequence of G =

a sequence of partitions $\mathscr{P}_n = \{\{v\} : v \in V(G)\}, \mathscr{P}_{n-1}, ..., \mathscr{P}_i, ..., \mathscr{P}_1 = \{V(G)\} \text{ such that } \mathscr{P}_i \text{ is obtained from } P_{i+1} \text{ by merging two parts}$

and the max red degree of each quotient graph G/\mathcal{P}_i is at most d.

Twin-width of G =

the smallest d s.t. \exists d-partition sequence of G.

[Bonnet, K, Thomassé, Watrigant '20]

FO model checking can be done in time $f(d, |\phi|) \cdot n$

when a d-contraction sequence is given.

[Bonnet, K, Thomassé, Watrigant '20]

Input: a graph G, first-order sentence ϕ . Question: G $\models \phi$?

FO model checking can be done in time $f(d, |\phi|) \cdot n$

when a d-contraction sequence is given.

$$\Phi := \exists x_1 \exists x_2 \cdots \exists x_k \forall u \bigvee_{1 \le i \le k} ((x_i = u) \lor E(x_i, u))$$

~ G \= \Phi iff G has a dominating set of size k.

FO-model checking is FPT [BKTW'20]

FO-model checking is FPT [BKTW'20]

FO model checking algorithm when a dpartition sequence is given

Prenex Normal Form

 $\varphi = Q_1 x_1 Q_2 x_2 \cdots Q_\ell x_\ell \phi^*$

- each Q_i is a non-negated quantifier (\forall, \exists)
- ϕ^* is a quantifier-free sentence; a boolean combination of $(x_i = x_j)$ and $E(x_i, x_j)$
- Any FO-sentence of quantifier rank q can be rewritten as a prenex sentence of depth f(q) for some f.
- We assume that the FO sentence we want to test is given in prenex form.
ℓ -Morphism Tree (Game tree) in G

 $\varphi = \exists x_1 \forall x_2 \exists x_3 (x_1 = x_2 \lor E(x_2, x_3))$

- all possible ℓ -tuples of vertices can be described as a game tree rooted at ϵ , called a complete ℓ -morphism tree $MT_{\ell}(G)$.
- For any prenex sentence φ of depth ℓ , $G \models \varphi$ can be tested using $MT_{\ell}(G)$.

Testing $G \models \varphi$ using $MT_{\ell}(G)$

 $\varphi = \exists x_1 \forall x_2 \exists x_3 (x_1 = x_2 \lor E(x_2, x_3))$

• $MT_{\ell}(G)$ has size n^{ℓ} . Let's reduce the size to make it more useful.

Full Reduction $MT'_{\mathscr{C}}(G)$ of \mathscr{C} -Morphism Tree $MT_{\mathscr{C}}(G)$

- The size of a full reduction $MT'_{\mathcal{C}}(G)$ is bounded by a function of \mathcal{C} .
- If $MT'_{\mathscr{C}}(G_1) = MT'_{\mathscr{C}}(G_2) \rightarrow G_1$ and G_2 satisfies precisely the same set of prenex FO sentences of depth $\leq \mathscr{C}$.

- In general, we cannot compute $MT'_{\mathcal{C}}(G)$ efficiently.
- We show that $MT'_{\mathcal{C}}(G)$ can be computed in time $f(d, \mathcal{C}) \cdot n$ when a d-partition sequence is given.

Maintain $MT'_{\ell}(G[X])$ per part $X \in \mathscr{P}$

• Following the *d*-partition sequence $\mathscr{P}_n, \dots, \mathscr{P}_1$

- At \mathscr{P}_i : maintain the list of $MT'_{\mathscr{C}}(G[X])$ for each $X\in \mathscr{P}_i$
- At $\mathscr{P}_1 = \{V\}: MT'_{\mathscr{C}}(G[V]) = MT'_{\mathscr{C}}(G)$

Maintain $MT'_{\mathscr{C}}(G[X])$ per part $X \in \mathscr{P}$

 $MT_{\mathcal{C}}(G)$ can be obtained by "shuffling" all pairs of root-to-leaf paths and arranging them by prefix relations, then truncate all nodes of depth $> \mathcal{C}$.

Maintain $MT'_{\mathscr{C}}(G[X])$ per part $X \in \mathscr{P}$

 $MT_{\mathcal{C}}(G)$ can be obtained by "shuffling" all pairs of root-to-leaf paths and arranging them by prefix relations, then truncate all nodes of depth $> \mathcal{C}$.

 $\operatorname{Maintain} MT'_{\operatorname{\mathscr{C}}}(G[X]) \operatorname{per} \operatorname{part} X \in \operatorname{\mathscr{P}}$

With ℓ -shuffle of (fully reduced) $MT'_{\ell}(G_1)$ and $MT'_{\ell}(G_2)$, do we not lose information? That is, ℓ -shuffle of $MT'_{\ell}(G_1)$ and $MT'_{\ell}(G_2)$ is a reduction of $MT_{\ell}(G)$? Yes, if it is fully (non-)adjacent between $V(G_1)$ and $V(G_2)$.

Maintain $MT'_{\mathscr{C}}(G[X])$ per part $X \in \mathscr{P}$

With ℓ -shuffle of (fully reduced) $MT'_{\ell}(G_1)$ and $MT'_{\ell}(G_2)$, do we not lose information? That is, ℓ -shuffle of $MT'_{\ell}(G_1)$ and $MT'_{\ell}(G_2)$ is a reduction of $MT_{\ell}(G)$? Yes, if it is fully (non-)adjacent between $V(G_1)$ and $V(G_2)$.

Maintain $MT'_{\mathscr{C}}(G[X])$ per part $X \in \mathscr{P}$

" ℓ -shuffle" $MT'_{\ell}(G_1)$ and $MT'_{\ell}(G_2)$ and reduce the obtained ℓ -morphism tree.

→ By doing this, we do not lose any information for $MT_{\ell}(G_1 \bigoplus G_2)$ (or $MT_{\ell}(G_1 \bigotimes G_2)$).

→ i.e. ℓ -shuffle of $MT'_{\ell}(G_1)$ and $MT'_{\ell}(G_2)$ is a reduction of the full morphism-tree $MT_{\ell}(G)$

→ This works for 0-partition sequence (i.e. cographs, but not with d-partition sequence in general.

Strategy

$\operatorname{Maintain} MT'_{\operatorname{\mathscr{C}}}(G, \operatorname{\mathscr{P}}, X) \operatorname{per} \operatorname{part} X \in \operatorname{\mathscr{P}}$

$$\begin{split} &MT_{\ell}(G,\mathscr{P},X) \text{ concerns only the game move } (a_1,\ldots,a_\ell) \text{ in } \\ &(X_1,\ldots,X_\ell) \in \mathscr{P}^\ell \text{ s.t.} \end{split}$$

- $X_1 = X$
- $\operatorname{dist}_{G_{\mathscr{P}}}(X, X_i) \leq 3^{\ell}$ (minus some technical condition to guarantee an efficient update of the $MT'_{\ell}(G, \mathscr{P}, X)$'s after contraction)

To reduce to $MT'_{\mathscr{C}}(G, \mathscr{P}, X)$, the isomorphism between two siblings take into account the membership in parts of \mathscr{P} .

The size of $MT'_{\mathscr{C}}(G, \mathscr{P}, X)$ is bounded by some function $h(\mathscr{C}, d)$ as the number of distinct parts in the radius $3^{\mathscr{C}}$ -ball centered at X is bounded ($\leq d^{3^{\mathscr{C}}} + 1$).

Strategy: update from \mathscr{P}_{i+1} to \mathscr{P}_i

Maintain $MT'_{\mathscr{C}}(G, \mathscr{P}, X)$ per part $X \in \mathscr{P}$

 $X_{\! u}, X_{\! v} \in \mathscr{P}_{i+1}$ are merged to form a part $X_{\! z}$, to yield \mathscr{P}_i

Strategy: update from \mathscr{P}_{i+1} to \mathscr{P}_i

Maintain $MT'_{\ell}(G, \mathscr{P}, X)$ per part $X \in \mathscr{P}$

radius- 3^{ℓ} ball R centered at $X_1 \cup X_2$ in the red graph $G_{\mathscr{P}_i}$

To compute $MT'_{\mathscr{C}}(G, \mathscr{P}_i, W)$, we \mathscr{C} -shuffle over the parts Z in R 'sufficiently far' from W in $G_{\mathscr{P}_{i+1}}$: the information from $MT'_{\mathscr{C}}(G, \mathscr{P}_{i+1}, Z)$ for Z close to W are already implemented in $MT'_{\mathscr{C}}(G, \mathscr{P}_{i+1}, W)$.

Recap of FO model checking algorithm

For φ in prenex form of depth ℓ ; almost true version

- Follow the *d*-partition sequence $\mathscr{P}_n, \mathscr{P}_{n-1}, ..., \mathscr{P}_1$.
- Initialization for \mathscr{P}_n : $G_{\mathscr{P}_n}$ is edgeless. The fully reduced ℓ -morphism tree $MT'_{\ell}(G, \mathscr{P}_n, \{v\})$ is a length- ℓ path, each node corresponding to $(v), (v, v), \cdots$ and (v, \dots, v)
- Assume for $\mathscr{P}_{i+1}:MT'_{\mathscr{C}}(G,\mathscr{P}_{i+1},X)$ is given for each $X\in\mathscr{P}_{i+1}$

•
$$\mathscr{P}_i = \mathscr{P}_{i+1} \setminus \{X_1, X_2\} \cup \{X_1 \cup X_2\}:$$

- $R = N_{G_{\mathcal{P}_i}}^{3^{\ell}}(X_1 \cup X_2)$
- If $Y \notin R$: $MT'_{\ell}(G, \mathscr{P}_i, X) := MT'_{\ell}(G, \mathscr{P}_{i+1}, X)$
- If $Y \in R$: $MT'_{\mathscr{C}}(G, \mathscr{P}_i, Z)$ is the \mathscr{C} -shuffle of all $MT'_{\mathscr{C}}(G, \mathscr{P}_i, W)$ for $W \in R$ which was far from Z in $G_{\mathscr{P}_{i+1}}$.
- Check φ on $MT'_{\mathscr{C}}(G, \mathscr{P}_1, V\!(G)).$

Example: k-Independent Set

Example: k-Independent Set

For any partial solution S realizing T, three possibilities:

(a) $T \cap G_{i+1}(u) = \emptyset$, (b) $T \cap G_{i+1}(v) = \emptyset$, (c) both sets non-empty.

Assuming that no realizable set of size \geq k was found so far,

→ Best partial solution S realizing T, induces connected red components of T-z+u, T-z+v, or T-z+{u,v} of size at most k each.

Assuming that no realizable set of size \geq k was found so far,

→ Best partial solution S realizing T, induces connected red components of T-z+u, T-z+v, or T-z+{u,v} of size at most k each.

In a graph of max degree \leq d, there are at most $(d^{2k-2} + 1)|X|$ connected sets of size at most k containing a set X.

FO-model checking is FPT [BKTW'20]

FO-model checking is FPT [BKTW'20]

Borrowed from Sebastian Siebertz's slides

For a hereditary class $\ensuremath{\mathscr{C}}$

[Bonnet, K, Thomassé, Watrigant '20]

Summary II

For a hereditary class \mathscr{C} of interval graphs | permutations | ordered graphs | tournaments | circle graphs | rooted directed path graphs

Concluding Remarks

- For all the classes which are known to have bounded twin-width, we known how to compute the (approximate) contraction sequence in time $f(d) \cdot n$.
- We still do not know how to compute f(tww)-contraction sequence in FPT, even in XP time, when the input graph is arbitrary. $O(\sqrt{n} \cdot \log n)$ -approximation (?) is recently obtained.
Concluding Remarks

- For all the classes which are known to have bounded twin-width, we known how to compute the (approximate) contraction sequence in time $f(d) \cdot n$.
- We still do not know how to compute f(tww)-contraction sequence in FPT, even in XP time, when the input graph is arbitrary. $O(\sqrt{n} \cdot \log n)$ -approximation (?) is recently obtained.
- Characterizing the hereditary classes on which FO model checking is in FPT is a very active topic recently.
 Conjecture: FO model checking on C is FPT if and only if C does not transduce the class of all graphs (a.k.a. monadic NIP). Just a few weeks ago, a combinatorial characterization of monadic NIP class was announced, perhaps we're just a few steps from the conjecture to be confirmed.

Thank you!