
20èmes Journées de Combinatoire et d'Algorithmes du Littoral Méditerranéen
(JCALM’23)

13 December 2023, Montpellier, France

FO model checking on
graphs of bounded twin-
width
Eunjung KIM,
LAMSADE / CNRS, Université Paris-Dauphine

Contraction in a trigraph

Identification of two vertices, not-necessarily adjacent

• edges with turn red

• red edges stay red

N(u) △ N(v)

Trigraph has three types of adjacency: (black) edge, non-edge, red edge

Contraction Sequence

A contraction sequence of G =  
 

a sequence of trigraphs = single-vertex graph

such that is obtained from by one contraction

G = Gn, Gn−1, …, G1
Gi Gi+1

Contraction Sequence

A contraction sequence of G =  
 

a sequence of trigraphs = single-vertex graph

such that is obtained from by one contraction

G = Gn, Gn−1, …, G1
Gi Gi+1

and the max red degree of each is at most d.Gi

d-

2-contraction sequence

Twin-width of a graph

Twin-width of G =

the smallest d s.t. d-contraction sequence of G.∃

What is the (upper-bound of) twin-width
of …

• clique?
• disjoint union of G and H?
• complete join of G and H?
• cograph?
• path?
• tree?
• planar graphs?

Trees

If possible, contract two twin leaves

Trees

If not, contract a deepest leaf with its parent

Trees

If not, contract a deepest leaf with its parent

Trees

If possible, contract two twin leaves

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Trees

Cannot create a red degree-3 vertex

Trees

Generalization to bounded treewidth and even bounded rank-width

Grids

4-sequence for planar grids

Grids

4-sequence for planar grids

Grids

4-sequence for planar grids

Grids

4-sequence for planar grids

Grids

4-sequence for planar grids

Grids

4-sequence for planar grids

Grids

4-sequence for planar grids

Graph classes of small twin-width

•trees, graphs of bounded tree-width

•bounded clique-width (rank-width) graphs

•unit interval graphs

•strong products of two graphs of bounded tww, one with bounded
degree

• -subdivision of all -vertex graphs, etc.

• (subgraphs of) d-dimensional grids

• -free unit ball graphs in dimension d

•hereditary proper subclass of permutation graphs

•posets of bounded antichain size

• -minor-free graphs

•square of planar graphs

•map graphs

• -planar graphs

•bounded degree string graphs

Ω(log n) n

Kt

Kt

k

[Bonnet, Geniat, K, Thomassé, Watrigant ’20, ’21]

Graph classes of small twin-width

•trees, graphs of bounded tree-width

•bounded clique-width (rank-width) graphs

•unit interval graphs

•strong products of two graphs of bounded tww, one with bounded
degree

• -subdivision of all -vertex graphs, etc.

• (subgraphs of) d-dimensional grids

• -free unit ball graphs in dimension d

•hereditary proper subclass of permutation graphs

•posets of bounded antichain size

• -minor-free graphs

•square of planar graphs

•map graphs

• -planar graphs

•bounded degree string graphs

Ω(log n) n

Kt

Kt

k The class of all cubic graphs have
unbounded twin-width

[Bonnet, Geniat, K, Thomassé, Watrigant ’20, ’21]

4/20

given two bags:

it means in the original graph:

no edge all edges at least one edge,
at least one non-edge

2-partition sequence

Twin-width of a graph

Twin-width of G =

the smallest d s.t. d-partition sequence of G.∃

A d-contraction sequence of G =  
 

a sequence of partitions
 such that is

obtained from by merging two parts
𝒫n = {{v} : v ∈ V(G)}, 𝒫n−1, …, 𝒫i, …, 𝒫1 = {V(G)} 𝒫i

Pi+1
and the max red degree of each quotient graph is at most d.G/𝒫i

FO model checking can
be done in time f(d,|φ|)∙n
when a d-contraction sequence is given.

[Bonnet, K, Thomassé, Watrigant ’20]

FO model checking can
be done in time f(d,|φ|)∙n
when a d-contraction sequence is given.

Input: a graph G, first-order sentence φ.
Question: G ⊨ φ?

⤳ G ⊨ Φ iff G has a dominating set of size k.

Φ := ∃x1 ∃x2⋯∃xk ∀u ⋁
1≤i≤k

((xi = u) ∨ E(xi, u))

[Bonnet, K, Thomassé, Watrigant ’20]

unit interval
graphs

posets of
bounded width

bounded
clique-width

bounded
tree-width

planar

bounded
expansion

bounded
degree

nowhere
dense

proper
minor-closed

co-graphs

permutations
avoiding a fixed

pattern

bounded
linear clique-

width

FO-model checking is FPT [BKTW’20]

sparse classesdense classes

G+’15

Flum, Grohe ‘01

Dvorák, Král, Thomas ‘13

Grohe, Kreutzer, Siebertz ‘17

Seese ‘96

Frick, Grohe ‘01

Guillemot, Marx ’14

CMR’00

unit interval
graphs

posets of
bounded width

bounded
clique-width

bounded
tree-width

planar

bounded
expansion

bounded
degree

nowhere
dense

proper
minor-closed

co-graphs

permutations
avoiding a fixed

pattern

bounded
linear clique-

width

FO-model checking is FPT [BKTW’20]

sparse classesdense classes

bounded
twin-width

G+’15

Flum, Grohe ‘01

Dvorák, Král, Thomas ‘13

Grohe, Kreutzer, Siebertz ‘17

Seese ‘96

Frick, Grohe ‘01

Guillemot, Marx ’14

CMR’00

FO model checking
algorithm when a d-

partition sequence is given

Prenex Normal Form

φ = Q1x1Q2x2⋯Qℓxℓϕ*

• each is a non-negated quantifier ()

• is a quantifier-free sentence; a boolean combination of
 and

• Any FO-sentence of quantifier rank can be rewritten as a prenex
sentence of depth for some .

• We assume that the FO sentence we want to test is given in
prenex form.

Qi ∀, ∃

ϕ*
(xi = xj) E(xi, xj)

q
f(q) f

-Morphism Tree (Game tree) in ℓ G
φ = ∃x1 ∀x2 ∃x3(x1 = x2 ∨ E(x2, x3))

• all possible -tuples of vertices can be described as a game tree
rooted at , called a complete -morphism tree .

• For any prenex sentence of depth , can be tested using
.

ℓ
ε ℓ MTℓ(G)

φ ℓ G ⊧ φ
MTℓ(G)

Testing using G ⊧ φ MTℓ(G)
φ = ∃x1 ∀x2 ∃x3(x1 = x2 ∨ E(x2, x3))

• has size . Let’s reduce the size to make it more useful.MTℓ(G) nℓ

(Full) Reduction of -Morphism Treeℓ

(Full) Reduction of -Morphism Treeℓ

(Full) Reduction of -Morphism Treeℓ

(Full) Reduction of -Morphism Treeℓ

(Full) Reduction of -Morphism Treeℓ

(Full) Reduction of -Morphism Treeℓ

(Full) Reduction of -Morphism Treeℓ

(Full) Reduction of -Morphism Treeℓ

(Full) Reduction of -Morphism Treeℓ

(Full) Reduction of -Morphism Treeℓ

(Full) Reduction of -Morphism Treeℓ

Full Reduction of -Morphism Tree MT′ ℓ(G) ℓ MTℓ(G)

• The size of a full reduction is bounded by a
function of .

• If ➔ and satisfies
precisely the same set of prenex FO sentences of
depth .

MT′ ℓ(G)
ℓ

MT′ ℓ(G1) = MT′ ℓ(G2) G1 G2

≤ ℓ

• In general, we cannot compute
efficiently.

• We show that can be computed in time
 when a d-partition sequence is given.

MT′ ℓ(G)

MT′ ℓ(G)
f(d, ℓ) ⋅ n

Strategy: first attempt
Maintain per part MT′ ℓ(G[X]) X ∈ 𝒫

• Following the -partition sequence

• At : maintain the list of for each

• At :

d 𝒫n, ⋯, 𝒫1

𝒫i MT′ ℓ(G[X])
X ∈ 𝒫i

𝒫1 = {V} MT′ ℓ(G[V]) = MT′ ℓ(G)

Strategy: first attempt
Maintain per part MT′ ℓ(G[X]) X ∈ 𝒫

MTℓ(G1) MTℓ(G2)

….

 can be obtained by “shuffling” all pairs of

root-to-leaf paths and arranging them by prefix relations, then

truncate all nodes of depth .

MTℓ(G)

> ℓ

Strategy: first attempt
Maintain per part MT′ ℓ(G[X]) X ∈ 𝒫

MTℓ(G1) MTℓ(G2)

….

 can be obtained by “shuffling” all pairs of

root-to-leaf paths and arranging them by prefix relations, then

truncate all nodes of depth .

MTℓ(G)

> ℓ

Strategy: first attempt
Maintain per part MT′ ℓ(G[X]) X ∈ 𝒫

MT′ ℓ(G1) MT′ ℓ(G2)

….

With -shuffle of (fully reduced) and ,

do we not lose information? That is,

-shuffle of and is a reduction of ?

Yes, if it is fully (non-)adjacent between and .

ℓ MT′ ℓ(G1) MT′ ℓ(G2)

ℓ MT′ ℓ(G1) MT′ ℓ(G2) MTℓ(G)
V(G1) V(G2)

Strategy: first attempt
Maintain per part MT′ ℓ(G[X]) X ∈ 𝒫

MT′ ℓ(G1) MT′ ℓ(G2)

….

With -shuffle of (fully reduced) and ,

do we not lose information? That is,

-shuffle of and is a reduction of ?

Yes, if it is fully (non-)adjacent between and .

ℓ MT′ ℓ(G1) MT′ ℓ(G2)

ℓ MT′ ℓ(G1) MT′ ℓ(G2) MTℓ(G)
V(G1) V(G2)

Strategy: first attempt

“ -shuffle” and and reduce the
obtained -morphism tree.

➔ By doing this, we do not lose any information for

 (or .

➔ i.e. -shuffle of and is a
reduction of the full morphism-tree

➔ This works for 0-partition sequence (i.e. cographs,
but not with -partition sequence in general.

ℓ MT′ ℓ(G1) MT′ ℓ(G2)
ℓ

MTℓ(G1 ⊕ G2) MTℓ(G1 ⊗ G2)
ℓ MT′ ℓ(G1) MT′ ℓ(G2)

MTℓ(G)

d

Maintain per part MT′ ℓ(G[X]) X ∈ 𝒫

Strategy

 concerns only the game move in
 s.t.

•

• (minus some technical condition to guarantee an efficient
update of the ’s after contraction)

To reduce to , the isomorphism between two siblings take into
account the membership in parts of .

The size of is bounded by some function as the number
of distinct parts in the radius -ball centered at is bounded ().

MTℓ(G, 𝒫, X) (a1, …, aℓ)
(X1, …, Xℓ) ∈ 𝒫ℓ

X1 = X
𝖽𝗂𝗌𝗍G𝒫(X, Xi) ≤ 3ℓ

MT′ ℓ(G, 𝒫, X)

MT′ ℓ(G, 𝒫, X)
𝒫

MT′ ℓ(G, 𝒫, X) h(ℓ, d)
3ℓ X ≤ d3ℓ + 1

Maintain per part MT′ ℓ(G, 𝒫, X) X ∈ 𝒫

Strategy: update from to 𝒫i+1 𝒫i
Maintain per part MT′ ℓ(G, 𝒫, X) X ∈ 𝒫

 are merged to form a part , to yield Xu, Xv ∈ 𝒫i+1 Xz 𝒫i

radius- ball R

centered at in the red graph

3ℓ

X1 ∪ X2 G𝒫i

 induced by the ball RG𝒫i+1

Strategy: update from to 𝒫i+1 𝒫i
Maintain per part MT′ ℓ(G, 𝒫, X) X ∈ 𝒫

radius- ball R centered at in the red graph 3ℓ X1 ∪ X2 G𝒫i

Y

X1

X2 for the parts in the ball R,
 needs to be recomputed

because -ball centered at W might have
changed in even if

W
MT′ ℓ(G, 𝒫, W)

3ℓ

G𝒫i
W ≠ X1 ∪ X2

W

To compute , we -shuffle over the parts Z in R

‘sufficiently far’ from W in :

the information from for Z close to W are already implemented

in .

MT′ ℓ(G, 𝒫i, W) ℓ
G𝒫i+1

MT′ ℓ(G, 𝒫i+1, Z)
MT′ ℓ(G, 𝒫i+1, W)

for

which is -away from in

MT′ ℓ(G, 𝒫i, Y) = MT′ ℓ(G, 𝒫i+1, Y)
Y ∈ 𝒫i

3ℓ X1 ∪ X2 G𝒫i

Recap of FO model checking algorithm

• Follow the -partition sequence .

• Initialization for : is edgeless. The fully reduced -morphism tree
 is a length- path, each node corresponding to

 and

• Assume for : is given for each

• :

•

• If :

• If : is the -shuffle of all for
 which was far from in .

• Check on .

d 𝒫n, 𝒫n−1, …, 𝒫1

𝒫n G𝒫n
ℓ

MT′ ℓ(G, 𝒫n, {v}) ℓ
(v), (v, v), ⋯ (v, …, v)

𝒫i+1 MT′ ℓ(G, 𝒫i+1, X) X ∈ 𝒫i+1

𝒫i = 𝒫i+1∖{X1, X2} ∪ {X1 ∪ X2}

R = N3ℓ

G𝒫i
(X1 ∪ X2)

Y ∉ R MT′ ℓ(G, 𝒫i, X) := MT′ ℓ(G, 𝒫i+1, X)
Y ∈ R MT′ ℓ(G, 𝒫i, Z) ℓ MT′ ℓ(G, 𝒫i, W)

W ∈ R Z G𝒫i+1

φ MT′ ℓ(G, 𝒫1, V(G))

For in prenex form of depth ; almost true versionφ ℓ

T

Example: -Independent Setk

T

For any partial solution S realizing T, three possibilities:

(a) , (b) , (c) both sets non-empty.T ∩ Gi+1(u) = ∅ T ∩ Gi+1(v) = ∅

Example: -Independent Setk

Assuming that no realizable set of size ≥ k was found so far,

➔ Best partial solution S realizing T, induces connected red components of
T-z+u, T-z+v, or T-z+{u,v} of size at most k each.

Assuming that no realizable set of size ≥ k was found so far,

➔ Best partial solution S realizing T, induces connected red components of
T-z+u, T-z+v, or T-z+{u,v} of size at most k each.

In a graph of max degree ≤ d,
there are at most connected sets of size at most k

containing a set X.
(d2k−2 + 1) |X |

unit interval
graphs

posets of
bounded width

bounded
clique-width

bounded
tree-width

planar

bounded
expansion

bounded
degree

nowhere
dense

proper
minor-closed

co-graphs

permutations
avoiding a fixed

pattern

bounded
linear clique-

width

FO-model checking is FPT [BKTW’20]

sparse classesdense classes

G+’15

Flum, Grohe ‘01

Dvorák, Král, Thomas ‘13

Grohe, Kreutzer, Siebertz ‘17

Seese ‘96

Frick, Grohe ‘01

Guillemot, Marx ’14

CMR’00

unit interval
graphs

posets of
bounded width

bounded
clique-width

bounded
tree-width

planar

bounded
expansion

bounded
degree

nowhere
dense

proper
minor-closed

co-graphs

permutations
avoiding a fixed

pattern

bounded
linear clique-

width

FO-model checking is FPT [BKTW’20]

sparse classesdense classes

bounded
twin-width

G+’15

Flum, Grohe ‘01

Dvorák, Král, Thomas ‘13

Grohe, Kreutzer, Siebertz ‘17

Seese ‘96

Frick, Grohe ‘01

Guillemot, Marx ’14

CMR’00

Borrowed from Sebastian Siebertz’s slides

Twin

FO model-checking is FPT on 𝒞

For a hereditary class 𝒞

 has bounded twin-width𝒞

 does NOT contain a large mixed minor𝒞≺

 does NOT FO-transduce all graphs𝒞

[Bonnet, K, Thomassé, Watrigant ’20]

BS’85, DFT’96,

Summary II

FO model-checking is FPT on 𝒞

For a hereditary class of interval graphs | permutations | ordered graphs 
| tournaments | circle graphs | rooted directed path graphs

𝒞

 has bounded twin-width𝒞

 does NOT contain a large mixed minor𝒞

 does NOT FO-transduce all graphs𝒞

• For all the classes which are known to have bounded twin-width,
we known how to compute the (approximate) contraction
sequence in time .

• We still do not know how to compute f(tww)-contraction
sequence in FPT, even in XP time, when the input graph is
arbitrary. -approximation (?) is recently obtained.

f(d) ⋅ n

O(n ⋅ log n)

Concluding Remarks

• For all the classes which are known to have bounded twin-width,
we known how to compute the (approximate) contraction
sequence in time .

• We still do not know how to compute f(tww)-contraction
sequence in FPT, even in XP time, when the input graph is
arbitrary. -approximation (?) is recently obtained.

f(d) ⋅ n

O(n ⋅ log n)

Concluding Remarks

• Characterizing the hereditary classes on which FO model
checking is in FPT is a very active topic recently.  
Conjecture: FO model checking on is FPT if and only if
does not transduce the class of all graphs (a.k.a. monadic NIP).
Just a few weeks ago, a combinatorial characterization of
monadic NIP class was announced, perhaps we’re just a few
steps from the conjecture to be confirmed.

𝒞 𝒞

Thank you!

