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Contraction in a trigraph

Trigraph has three types of adjacency: (black) edge, non-edge, red edge

|dentification of two vertices, not-necessarily adjacent
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« edges with N(u) /\ N(v) turn red

* red edges stay red



Contraction Sequence

A contraction sequence of G =

a sequence of trigraphs G = G,, G,_4, ..., G;= single-vertex graph
such that G; is obtained from G, ; by one contraction



Contraction Sequence

A d-contraction sequence of G =

a sequence of trigraphs G = G,, G,_4, ..., G;= single-vertex graph
such that G; is obtained from G, ; by one contraction
and the max red degree of each G; is at most d.



2-contraction sequence




Twin-width of a graph

Twin-width of G =

the smallest d s.t. 4 d-contraction sequence of G.




What is the (upper-bound of) twin-width
of ...

e clique?

e disjoint union of G and H?
e complete join of G and H?
e cograph?

e path?

o tree?

e planar graphs?



Trees

O

If possible, contract two twin leaves



Trees

O

If not, contract a deepest leaf with its parent



Trees

O

If not, contract a deepest leaf with its parent



Trees

If possible, contract two twin leaves



Trees

Cannot create a red degree-3 vertex
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Trees

Cannot create a red degree-3 vertex



Trees

Cannot create a red degree-3 vertex



Trees

Generalization to bounded treewidth and even bounded rank-width
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Graph classes of small twin-width
[Bonnet, Geniat, K, Thomasseé, Watrigant ’20, ’21]

*trees, graphs of bounded tree-width

* bounded clique-width (rank-width) graphs

* unit interval graphs

* strong products of two graphs of bounded tww, one with bounded
degree

*Q(log n)-subdivision of all n-vertex graphs, etc.

e (subgraphs of) d-dimensional grids

« K -free unit ball graphs in dimension d

* hereditary proper subclass of permutation graphs

e posets of bounded antichain size

« K.-minor-free graphs



Graph classes of small twin-width
[Bonnet, Geniat, K, Thomasseé, Watrigant ’20, ’21]

*trees, graphs of bounded tree-width

* bounded clique-width (rank-width) graphs

* unit interval graphs

* strong products of two graphs of bounded tww, one with bounded
degree

*Q(log n)-subdivision of all n-vertex graphs, etc.

* (subgraphs of) d-dimensional grids

« K -free unit ball graphs in dimension d

* hereditary proper subclass of permutation graphs

e posets of bounded antichain size

« K.-minor-free graphs

The class of all cubic graphs have

unbounded twin-width




given two bags:

it means in the original graph:
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all edges at least one edge,
at least one non-edge



2-partition sequence




Twin-width of a graph

A d-contraction sequence of G =

a sequence of partitions
P ={{v:veVG)},PL, _...P, ..., ={V(G)} such that & is

obtained from P, ; by merging two parts

and the max red degree of each quotient graph G/, is at most d.

Twin-width of G =

the smallest d s.t. 4 d-partition sequence of G.




[Bonnet, K, Thomasseé, Watrigant ’20]

FO model checkin Can
be done in time f(d,|¢

when a d-contraction sequence is glven



[Bonnet, K, Thomasseé, Watrigant ’20]

Input: a graph G, first-order sentence ¢.
Question: G = c]>7

FO model Checkln Can
be done in time f(d,|¢

when a d-contraction sequence is glven.

D :=dx;dx,---dx, Vu \/ ((xl- =u) Vv E(x, u))
1<i<k
~ G E @ iff G has a dominating set of size k.



FO-model checking is FPT skrw20)

dense classes

Guillemot, Marx '14

. )
permutations

avoiding a fixed

| pattern

posets of
bounded width

CMR00[ pounded .
. . unit interval
clique-width
graphs

T G+15

bounded
linear clique-
width

.

T\

J

T
(Ceogranie )

sparse classes

Grohe, Kreutzer, Siebertz ‘17

:

nowhere

dense

Dvorak, Kral, Thomas ‘13 T

:

bounded

expansnon

bounded
degree

Seese ‘96

[,,,

inor-closed

Flum, Grohe ‘o1

proper ]

:

bounded
tree-width

]

I
T

Frick, Grohe ‘o1




FO-model checking is FPT skrw20)

dense classes sparse classes

Grohe, Kreutzer, Siebertz ‘17
bounded
twin-width

nowhere
dense

Dvorak, Kral, Thomas ‘13 T

Guillemot, Marx ’14

permutations bounded bounded
avoiding a fixed posets of expansnon degree
| pattern bounded width

Seese ‘96

T G+15

CMR'00(  pounded - : proper

clique-width unitinterva mmor-closed Flum, Grohe ‘o1
T T graphs T

bounded A [ co-graphs ) [ bounded j ( planar )

linear clique- tree-width Frick, Grohe ‘o1
width

. J




FO model checking
algorithm when a d-
partition seguence Is given



Prenex Normal Form

@ = O1x10,%) - Qpx,

» each (; is a non-negated quantifier (V, 3)

« @* is a quantifier-free sentence; a boolean combination of

» Any FO-sentence of quantifier rank g can be rewritten as a prenex
sentence of depth f(g) for some f.

« We assume that the FO sentence we want to test is given in
prenex form.



-Morphism Tree (Game tree) in G

@ = 3x; Vo, Ax3(x; = x, V E(xy, X3))

e .> (T, o)

A A N

SCATAAANLANLLLABALLAAN NaANALILS

« all possible £-tuples of vertices can be described as a game tree
rooted at €, called a complete £-morphism tree M T (G).

 For any prenex sentence ¢ of depth £, G F ¢ can be tested using
MT(G).



Testing G F ¢ using MT ,(G)

@ = Jdx; VX, dx3(x; = %, V E(x,, X3))

J (T\t)
g = > . "

¥i & \4

1164 %0\11" A ; A

G AT AAANLANLLLABALLALAAN  NANaANALILS

« MT,(G) has size n’. Let’s reduce the size to make it more useful.



(Full) Reduction of /-Morphism Tree

s
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(Full) Reduction of /-Morphism Tree

Y1 TIA TIDAIAAAAALL 335 ALY



(Full) Reduction of /-Morphism Tree

A1 T ATTSATAAAAATT S53 AR



(Full) Reduction of /-Morphism Tree

3T AT SATAAAAATL S35 AAS



(Full) Reduction of /-Morphism Tree

3T AT S TAAAMATL B33 AAS



(Full) Reduction of /-Morphism Tree

P AT S 1A A ATTSSSAAN



(Full) Reduction of /-Morphism Tree

L AT D 1A A AL S33AA)



(Full) Reduction of /-Morphism Tree



(Full) Reduction of /-Morphism Tree
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Full Reduction MT,(G) of £-Morphism Tree MT ,(G)

» The size of a full reduction MT,(G) is bounded by a
function of Z.

o If MT,(G,) = MT,(G,) = G; and G, satisfies
precisely the same set of prenex FO sentences of
depth < 7.




e In general, we cannot compute M7 ,(G)
efficiently.

e We show that M7 ,(G) can be computed in time
f(d, ) - n when a d-partition sequence is given.




Strategy: first attempt

Maintain M7 ,(G[X]) per part X € &

» Following the d-partition sequence &, ---, &,

» At & maintain the list of MT,(G[X]) for each
Xe P

. At P, = {V}: MTAG[V]) = MT,G)



Strategy: first attempt

Maintain M7 ,(G[X]) per part X € &
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MT ,(G) can be obtained by “shuffling” all pairs of
root-to-leaf paths and arranging them by prefix relations, then

truncate all nodes of depth > 7.



Strategy: first attempt

Maintain M7 ,(G[X]) per part X € &
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MT ,(G) can be obtained by “shuffling” all pairs of
root-to-leaf paths and arranging them by prefix relations, then

truncate all nodes of depth > 7.



Strategy: first attempt

Maintain M7 ,(G[X]) per part X € &
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With £-shuffle of (fully reduced) M T}(Gl) and M T;(Gz),
do we not lose information? That is,

¢ -shuffle of MT,(G,) and MT,(G,) is a reduction of MT (G)?
Yes, if it is fully (non-)adjacent between V(G,) and V(G,).




Strategy: first attempt

Maintain M7 ,(G[X]) per part X € &

;\/\ /]

MTH(G)) MTH(Gy)
I 1 G

With #-shuffle of (fully reduced) MT (G,) and MT,(G,),
do we not lose information? That is,
¢ -shuffle of MT,(G,) and MT,(G,) is a reduction of MT (G)?

Yes, if it is fully (non-)adjacent between V(G,) and V(G,).




Strategy: first attempt

Maintain M7 ,(G[X]) per part X € &

“¢-shuffle” MT,(G,) and MT,(G,) and reduce the
obtained £-morphism tree.

-> By doing this, we do not lose any information for
MT (G, & G,) (or MT (G; ® G»).

- i.e. £-shuffle of MT,(G,) and MT,(G,) is a
reduction of the full morphism-tree MT ,(G)

-> This works for 0-partition sequence (i.e. cographs,
but not with d-partition sequence in general.



Strategy

Maintain M7 (G, &, X) per part X € &

MT/(G, &P, X) concerns only the game move (a;,
X, ...,X,) € P st

° X1=X

ety p)in

e distg (X, X)) < 3% (minus some technical condition to guarantee an efficient
update of the MT (G, &, X)’s after contraction)

To reduce to MT (G, &, X), the isomorphism between two siblings take into
account the membership in parts of .

The size of MT (G, &, X) is bounded by some function i(Z’, d) as the number
of distinct parts in the radius 3% -ball centered at X is bounded (< d3f + 1).



Strategy: update from &°._ | to &,
Maintain M7 (G, &, X) per part X € &

X, X, € &P, are merged to form a part X_ , to yield &,

radius-3¢ ball R

G, induced by the ball R centered at X; U X, in the red graph G4



Strategy: update from &°._ | to &,
Maintain M7 (G, &, X) per part X € &

radius-37 ball R centered at X; U X, inthe red graph G

)

forY € &,
which is 37 -away from XiUX,inGgy

for the parts W in the ball R,
MT,(G, P, W) needs to be recomputed

because 37 -ball centered at W might have
changed in G evenif W # X, U X,

To compute MT,(G, P;, W), we £-shuffle over the parts Z in R

‘sufficiently far’ from Win G

i+1

the information from MT (G, &, ,Z) for Z close to W are already implemented
in MT (G, P, ., W).



Recap of FO model checking algorithm

For ¢ in prenex form of depth £; almost true version

» Follow the d-partition sequence &, , P P

. Initialization for &, : Gg,n is edgeless. The fully reduced £-morphism tree

n_l, o

MT, G, S, {v})is alength-£ path, each node corresponding to
v),(v,v),-and (v, ..., V)

» Assume for P, : MT (G, P, ,,X) is given foreach X € &,
» Pi=P X, X5 U {X UX, )
— N
. R= NG%(XI UX,)

. fY & R: MTXG, P, X) := MTAG, P, X)

« IfY € REMTLG, P, Z)is the £-shuffle of all MT (G, &, W) for
W € R which was far from Zin G .

» Check ¢ on MT (G, P, V(G)).



Example: k-Independent Set




Example: k-Independent Set

For any partial solution S realizing T, three possibilities:

@TNG (w)=0a,b)TnNG, (v) =, (c) both sets non-empty.






Assuming that no realizable set of size > k was found so far,

-> Best partial solution S realizing T, induces connected red components of
T-z+u, T-z+v, or T-z+{u,v} of size at most k each.




Assuming that no realizable set of size > k was found so far,

-> Best partial solution S realizing T, induces connected red components of
T-z+u, T-z+v, or T-z+{u,v} of size at most k each.

In a graph of max degree < d,
there are at most (d°=2 + 1) | X| connected sets of size at most k
containing a set X.
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Borrowed from Sebastian Siebertz’s slides



Twin

For a hereditary class € [Bonnet, K, Thomassé, Watrigant '20]
rommmnne FO model-checking is FPT on ¢
BS’85, DFT’96, I

¢ has bounded twin-width

|

€ - does NOT contain a large mixed minor

|

temeen > % does NOT FO-transduce all graphs




Summary I

For a hereditary class € of interval graphs | permutations | ordered graphs
| tournaments | circle graphs | rooted directed path graphs

SEREEEED FO model-checking is FPT on €

|

¢ has bounded twin-width

|

% does NOT contain a large mixed minor

|

-------- > @ does NOT FO-transduce all graphs




Concluding Remarks

* For all the classes which are known to have bounded twin-width,
we known how to compute the (approximate) contraction

sequence in time f(d) - n.

* We still do not know how to compute f(tww)-contraction
sequence in FPT, even in XP time, when the input graph is

arbitrary. 0(\/; - log n)-approximation (?) is recently obtained.



Concluding Remarks

* For all the classes which are known to have bounded twin-width,
we known how to compute the (approximate) contraction

sequence in time f(d) - n.

* We still do not know how to compute f(tww)-contraction
sequence in FPT, even in XP time, when the input graph is

arbitrary. 0(\/; - log n)-approximation (?) is recently obtained.

* Characterizing the hereditary classes on which FO model
checking is in FPT is a very active topic recently.

Conjecture: FO model checking on & is FPT if and only if ¢
does not transduce the class of all graphs (a.k.a. monadic NIP).
Just a few weeks ago, a combinatorial characterization of
monadic NIP class was announced, perhaps we’re just a few
steps from the conjecture to be confirmed.



Thank you!



