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Courcelle’s theorem as a generalization

Theorem (Courcelle, 1990)

Every graph property definable in MSOL can be decided in linear time

on graphs of bounded treewidth.

The tree-decomposition of graphs of bounded treewidth defined by any

given MSO formula is recognized by a tree-automaton.

Theorem (Rabin, 1969)

Every tree property definable in MSOL can be decided in linear time on

trees.

The set of trees defined by any given MSO formula is recognized by a

tree-automaton.

Theorem (Büchi–Elgot–Trakhtenbrot, 1960)

Every word property definable in MSOL can be decided in linear time.

The set of words defined by any given MSO formula is recognized by an

automaton.
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Automaton and MSO



DFA

Definition (Deterministic Finite Automaton (DFA))

A deterministic finite automaton A is a 5-tuple, (Σ,Q, δ, q0,F ),

consisting of

• an alphabet Σ,

• a finite set of states Q,

• a transition function δ : Q × Σ → Q,

• an initial state q0 ∈ Q,

• a set of accepting states F ⊆ Q.

Σ = {0, 1}
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Language of a DFA

Definition (Recognized word)

We say that a DFA (Σ,Q, δ, q0,F ) accepts a word w1 . . .wn ∈ Qn, if

there exists a sequence q1, . . . , qn such that:

• for all i ∈ {1, . . . , n}, qi = δ(qi−1,wi ),

• qn ∈ F .

Σ = {0, 1} 0
0

0 0

1

1
1

1

0,1

Note: For a fixed DFA A, testing if w is recognized by A is linear in |w |.
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MSO for words

The variables are positions (x , y , . . .) and sets of positions (X ,Y , . . .).

For all letter α, we have a predicate Qα which is interpreted as

Qα(x) := “Position x is labelled α”

The syntax of MSO on words.

ϕ := x = y + 1 | x = y | Qα(x) | X = Y | x ∈ X

| ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 =⇒ ϕ2

| ∀x .ϕ | ∀X .ϕ | ∃x .ϕ | ∃X .ϕ,

∀x ,Qa(x) =⇒ (∀y , y = x + 1 =⇒ Qb(y))

“Every a is followed by b”
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MSO and automaton

Theorem (Büchi–Elgot–Trakhtenbrot, 1960)

For any MSO formula ϕ, there exists a DFA A(ϕ) that recognizes

exactly the words accepted by ϕ.

Corollary

For any MSO formula ϕ, there exists a linear time algorithm that decide

if any given word w is accepted by ϕ.
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Idea of the proof - I

The syntax of MSO on words can be reduced to:

ϕ := x = y + 1 | Qα(x) | x ∈ X | X = Y | x = y

| ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 =⇒ ϕ2

| ∃x .ϕ | ∃X .ϕ | ∀x .ϕ | ∀X .ϕ,

We will prove the result by induction on the MSO formula.
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Idea of the proof - II

The proof is by induction on the MSO formula for this we need two

notions:

MSO formula with a free variable. ex: ϕ(S) := ∀y , y ∈ S =⇒ Qa(y)

How do we give S to the automaton ??

Instead of {a, b}, we use the alphabet

{(
a

0

)
,

(
a

1

)
,

(
b

0

)
,

(
b

1

)}
ex : w = ababaab and S = {0, 2, 5} gives:

w ,S =

(
a

1

)(
b

0

)(
a

1

)(
b

0

)(
a

0

)(
a

1

)(
b

0

)

ex : (
a
0

)
,

(
a
1

)
,

(
b
0

)

(
b
1

) ( )
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The proof by induction:

A(x = y)Σ
x
y


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The proof by induction:
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The proof by induction:
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The proof by induction:
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The proof by induction:

A(ϕ ∧ ψ) = A(L(ϕ) ∩ L(ψ))
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The proof by induction:

A(¬ψ)
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The proof by induction:

A(¬ψ)

A(ψ) = (Σ, Q, δ, q0, F )

= A(L(ψ)) = (Σ, Q, δ, q0, Q \ F )
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The proof by induction:
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The proof by induction:
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The proof by induction:

A(∃X,ϕ(X))

A(ϕ(X)) = (Σ, Q, δ, q0, F )

(−→v
1

)

(−→v
0

)
−→v

−→v

= Determinize(Σ, Q, δ′, q0, F )

Where for all q ∈ Q :

9



Some comments

Determinization can increase exponentially the size of the automaton

|A(ψ)| ≤ 2 22
···|ψ|︸ ︷︷ ︸

k times

where k is the number of determinizations ≈ “number of quantifier

alternation”

Theorem (The other direction holds)

A language is regular, if and only if it is defined by an MSO formula.

Corollary (Presburger, 1929)

Presburger arithmetic is decidable.
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Binary tree-automata and

MSO on binary trees



An inductive view of automata

A word is either:

• ε empty,

• wα for some word w and letter α.

Given a DFA (Σ,Q, δ, q0,F ), let σ : Σ∗ → Q be the function that

computes the state of any given word then:

• σ(ε) = q0,

• σ(wa) = δ(σ(w), a).

A word w is accepted iff σ(w) ∈ F .
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LOB tree

A labeled ordered binary tree is either:

• τ0 the empty tree,

•

α

Tl Tr for some letter α and trees Tl and Tr .

Example

aa

a

a

bb

b

12



LOB tree

A labeled ordered binary tree is either:

• τ0 the empty tree,

•

α

Tl Tr for some letter α and trees Tl and Tr .

Example

aa

a

a

bb

b

12



LOB tree

A labeled ordered binary tree is either:

• τ0 the empty tree,

•

α

Tl Tr for some letter α and trees Tl and Tr .

Example

aa

a

a

bb

b

12



LOB tree

A labeled ordered binary tree is either:

• τ0 the empty tree,

•

α

Tl Tr for some letter α and trees Tl and Tr .

Example

aa

a

a

bb

b

12



LOB tree

A labeled ordered binary tree is either:

• τ0 the empty tree,

•

α

Tl Tr for some letter α and trees Tl and Tr .

Example

aa

a

a

bb

b

These two trees are different:

a a

a a
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Deterministic binary-tree automaton

A DTFA A is a 5-tuple, (Σ,Q, δ, q0,F ), consisting of

• an alphabet Σ, a finite set of states Q, an initial state q0 ∈ Q, a set

of accepting states F ⊆ Q,

• a transition function δ : Q × Q × Σ → Q.

Let σ be the function that computes the state of any given LOB-tree:

• σ(τ0) = q0,

•

α

Tl Tr

σ( ) = δ(σ(Tl), σ(Tr), α)

A tree T is accepted iff σ(T ) ∈ F .

Note: Testing if T is recognized by A is linear in |T |.
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MSO on binary trees - The symbols

The variables are vertices (x , y , . . .) and sets of vertices (X ,Y , . . .).

For all letter α, we have a predicate Qα which is interpreted as

Qα(x) := “Vertex x is labelled α”

For any vertex v different from τ0,

• v .l := left child of v ,

• v .r := right child of v ,

• v .p := parent of v (v itself if v is the root).
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MSO on binary trees - The syntax

The syntax of MSO on LOB trees.

ϕ := x = y .l | x = y .r | x = y .p | x = y | Qα(x) | x ∈ X | X = Y

| ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 =⇒ ϕ2

| ∀x .ϕ | ∀X .ϕ | ∃x .ϕ | ∃X .ϕ.

ex:

ψ(D) := ∀v ,∃d ∈ D, (v = d ∨ v = d .p ∨ d = v .p)

“D is a dominating set”

15



MSO on binary trees - The syntax

The syntax of MSO on LOB trees.

ϕ := x = y .l | x = y .r | x = y .p | x = y | Qα(x) | x ∈ X | X = Y

| ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 =⇒ ϕ2

| ∀x .ϕ | ∀X .ϕ | ∃x .ϕ | ∃X .ϕ.

ex:

ψ(D) := ∀v ,∃d ∈ D, (v = d ∨ v = d .p ∨ d = v .p)

“D is a dominating set”

15



MSO on binary trees - The syntax

The syntax of MSO on LOB trees.

ϕ := x = y .l | x = y .r | x = y .p | x = y | Qα(x) | x ∈ X | X = Y

| ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 =⇒ ϕ2

| ∀x .ϕ | ∀X .ϕ | ∃x .ϕ | ∃X .ϕ.

ex:

ψ(D) := ∀v ,∃d ∈ D, (v = d ∨ v = d .p ∨ d = v .p)

“D is a dominating set”

15



MSO on binary trees - The syntax

The syntax of MSO on LOB trees.

ϕ := x = y .l | x = y .r | x = y .p | x = y | Qα(x) | x ∈ X | X = Y

| ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 =⇒ ϕ2

| ∀x .ϕ | ∀X .ϕ | ∃x .ϕ | ∃X .ϕ.

ex:

ψ(D) := ∀v ,∃d ∈ D, (v = d ∨ v = d .p ∨ d = v .p)

“D is a dominating set”

15



MSO on binary trees - The syntax

The syntax of MSO on LOB trees.

ϕ := x = y .l | x = y .r | x = y .p | x = y | Qα(x) | x ∈ X | X = Y

| ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 =⇒ ϕ2

| ∀x .ϕ | ∀X .ϕ | ∃x .ϕ | ∃X .ϕ.

ex:

ψ(D) := ∀v ,∃d ∈ D, (v = d ∨ v = d .p ∨ d = v .p)

“D is a dominating set”

15



MSO on binary trees - The syntax

The syntax of MSO on LOB trees.

ϕ := x = y .l | x = y .r | x = y .p | x = y | Qα(x) | x ∈ X | X = Y

| ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 =⇒ ϕ2

| ∀x .ϕ | ∀X .ϕ | ∃x .ϕ | ∃X .ϕ.

ex:

ψ(D) := ∀v ,∃d ∈ D, (v = d ∨ v = d .p ∨ d = v .p)

“D is a dominating set”

15



Rabin’s theorem

Theorem (Rabin, 1969)

For any MSO formula ϕ, there exists a DTFA A(ϕ) that recognizes

exactly the LOB trees accepted by ϕ.

Corollary

Every LOB tree property definable in MSOL can be decided in linear

time on LOB trees.

Corollary

WS2S is decidable.
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The proof

It uses exactly the same idea as for MSO on words and DFA.

Remark: Again, the only thing that really increases the size of the

automaton is determinization.

17



The final ingredient:

interpretation



Encoding rooted trees in ordered binary trees

Definition

An rooted tree is either:

• a root and no other node (t0),

• or the join J(T1,T2) of two rooted trees T1

and T2.

T1

T2

18



Encoding rooted trees in ordered binary trees - example

Example

J(J(J(t0, J(J(t0, t0), t0)), J(t0, t0)), t0)

t0 t0

t0

t0

J

J

J

t0t0

J

J

J

t0
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Encoding the logical formula

We have a way to “encode” trees into binary trees.

How to translate MSO︸ ︷︷ ︸
graph

properties of trees into

MSO︸ ︷︷ ︸
LOB tree

properties of LOB trees ?

t0 t0

t0

t0

J

J

J

t0t0

J

J

J

t0

Let v , u be vertices and v ′, u′ the corresponding leaves in the LOB tree.

Adj(u, v) ⇐⇒ v ′ and u′ have two adjacents right ancestors v ′′ and u′′︸ ︷︷ ︸

In MSO over the LOB tree ?

20
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Adjacency

Adj(u, v) ⇐⇒ v ′ and u′ have two adjacents right ancestors v ′′ and u′′

We define:

LCC (X ) := ∀x , y : (x ∈ X ∧ y = x .l) =⇒ y ∈ X︸ ︷︷ ︸

X is left child closed

RA(x , y) := ∀A : (LCC (A) ∧ y ∈ A) =⇒ x ∈ A︸ ︷︷ ︸

y is a right ancestor of x

Edge(u′, v ′) := ∃u′′, v ′′ : RA(u′, u′′) ∧ RA(v ′, v ′′)

∧(u′′ = v ′′.r ∨ v ′′ = u′′.r)︸ ︷︷ ︸

v ′ and u′ have two adjacents right ancestors v ′′ and u′′

Adj(u, v) ⇐⇒ Edge(u′, v ′)

21
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Quantification

A vertex from a tree correspond to a leaf from the correponding LOB tree

If ϕ(x) is an MSO formula over graphs and ϕ′(x) is the equivalent MSO

formula over LOB trees

graph MSO︷ ︸︸ ︷
∃x , ϕ(x) ⇐⇒

LOB tree MSO︷ ︸︸ ︷
∃x , (ϕ′(x) ∧ (x is a leaf))

Leaf (x) := ∀y : ¬(y = x .l) ∧ ¬(y = x .r)

Leaves(X ) := ∀x : x ∈ X =⇒ leaf (x)
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The interpretation

We have:

• a map D from trees to LOB trees,

• a map I from MSO formula on graphs to MSO on LOB trees

such that

for any tree T and MSO formula ψ:

T |= ψ ⇐⇒ D(T ) |= I(ψ)

D and I can be computed in linear time.

Corollary

Given any tree T and MSO formula ψ, one can decide T |= ψ in time

f (|ψ|) · |T |.
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Cographs

A cograph is either:

s0 a single vertex graph,

G ∪ H : the disjoint union of two cographs,

J(G ,H) : the join of two cographs.

a

b c d e

f g

a

b

c

d e

g

f

Two vertices are adjacent iff their lowest common ancestor is J
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MSO : is LCC in J

ancestor(v , a) :=

∀C , (a ∈ C ∧ (∀x , x ∈ C =⇒ (x .l ∈ C ∧ x .r ∈ C )))︸ ︷︷ ︸
C is children closed

=⇒ v ∈ C

LCA(l1, l2, a) := ancestor(l1, a) ∧ ancestor(l2, a)

∧ ∀x : (ancestor(l1, x) ∧ ancestor(l2, x)) =⇒ ancestor(a, x)

Edge(l1, l2) := ∃a, LCA(l1, l2, a) ∧ QJ(a)
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The interpretation: cographs

We have:

• a map D from cographs to LOB trees,

• a map I from MSO formula on graphs to MSO on LOB trees

such that

for any cograph G and MSO formula ψ:

G |= ψ ⇐⇒ D(G ) |= I(ψ)

D and I can be computed in linear time (non-trivial for D, cf. modular

tree decomposition).

Corollary

Given any cograph G and MSO formula ψ, one can decide G |= ψ in

time linear in |G | (but non elementary in |ψ|).
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Bounded clique-width

clique-width ≤ 2 ⇐⇒ cograph

A graph with k labels has clique-width at most k if it is:

• a single vertex with label i ∈ {1, . . . , k},
• G ∪ H, where G and H are two labeled graphs of clique-width ≤ k

• obtained by adding all the possible edges between two label classes

in a labeled graph G of clique-width at most k

• obtained by renaming a label class with another label in a labeled

graph G of clique-width at most k.

The decomposition is (almost) given by the definition (and can be

computed in linear time).

The translation of the MSO formula uses the same idea as for cographs.

Corollary

Given any graph G of clique-width at most k and MSO formula ψ, one

can decide G |= ψ in time in f (|ψ|, |k |) · O(|G |).
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Tree-automata: beyond model

checking



Other use of tree-automaton

Tree automaton can be used for other purposes than model checking.

For any MSO formula Ψ(S), we let λΨ be the smallest value such that

Theorem template - 1

For any tree T , the number of sets S satisfying Ψ is in O((λΨ)
|T |).

Meta-Theorem, Rosenfeld, 2021

There exists an algorithm for the following problem

Input: An MSO formula Ψ(S) and a real ε > 0

Output: λ ∈ Q such that |λ− λΨ| < ε

28
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Other results (Rosenfeld, SODA 2021)

Familly λΨ Comments

Independent dominating sets
√
2

Total perfect dominating (227 × 7)
1
85 ≈ 1.2751

Induced matchings ≈ 1.46557 root of x3 − x2 − 1

Perfect codes 3
1
7 ≈ 1.16993

Minimal perfect dominating ≈ 1.32472 root of x3 − x − 1

Maximal matchings
(

11+
√
85

2

) 1
7 ≈ 1.3917

3-matchings ≈ 1.3802 root of x4 − x3 − 1

4-matchings 13
1
9 ≈ 1.329754

5-matchings 1.2932 ≤? ≤ 1.2941

Maximal induced matchings ≈ 1.331576868 imprecision of 10−40

Maximal irredundant sets 1.537 ≤? ≤ 1.556
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Thanks !
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