Elementary first-order model checking for sparse graphs

Jakub Gajarský Michał Pilipczuk Marek Sokołowski *Giannos Stamoulis* Szymon Toruńczyk

Institute of Informatics, University of Warsaw, Poland

14.12.2023 JCALM 2023

first-order logic (FO):

Atomic formulas: x = y, adj(x, y)Logical connectives: $\varphi \land \psi$, $\varphi \lor \psi$, $\neg \varphi$. Quantifiers: $\exists x \ \varphi$, $\forall x \ \varphi$

first-order logic (FO):

Atomic formulas: x = y, adj(x, y)Logical connectives: $\varphi \land \psi$, $\varphi \lor \psi$, $\neg \varphi$. Quantifiers: $\exists x \ \varphi, \ \forall x \ \varphi$ "P₃ is an induced subgraph of G": $\exists x \exists y \exists z \ \left(adj(x, y) \land adj(y, z) \land \neg adj(x, z) \right)$

"G has a dominating set of size 3":

$$\exists x_1 \exists x_2 \exists x_3 \forall y \ \bigvee_{i \in \{1,2,3\}} \left(y = x_i \lor adj(x_i, y) \right)$$

first-order logic (FO):

Atomic formulas: x = y, adj(x, y)Logical connectives: $\varphi \land \psi$, $\varphi \lor \psi$, $\neg \varphi$. Quantifiers: $\exists x \ \varphi, \ \forall x \ \varphi$ "P₃ is an induced subgraph of G": $\exists x \exists y \exists z \ \left(adj(x, y) \land adj(y, z) \land \neg adj(x, z) \right)$

"G has a dominating set of size 3":

$$\exists x_1 \exists x_2 \exists x_3 \forall y \ \bigvee_{i \in \{1,2,3\}} \left(y = x_i \lor adj(x_i, y) \right)$$

FO MODEL CHECKING Input: a first-order formula φ and a graph G. Question: G satisfies φ ?

first-order logic (FO):

Atomic formulas: x = y, adj(x, y)Logical connectives: $\varphi \land \psi$, $\varphi \lor \psi$, $\neg \varphi$. Quantifiers: $\exists x \ \varphi, \ \forall x \ \varphi$ "P₃ is an induced subgraph of G": $\exists x \exists y \exists z \ \left(adj(x, y) \land adj(y, z) \land \neg adj(x, z) \right)$

"G has a dominating set of size 3":

$$\exists x_1 \exists x_2 \exists x_3 \forall y \ \bigvee_{i \in \{1,2,3\}} \left(y = x_i \lor adj(x_i, y) \right)$$

FO MODEL CHECKING Input: a first-order formula φ and a graph *G*. Question: *G* satisfies φ ?

▶ On general graphs, the problem is AW[*]-hard.

first-order logic (FO):

Atomic formulas: x = y, adj(x, y)Logical connectives: $\varphi \land \psi$, $\varphi \lor \psi$, $\neg \varphi$. Quantifiers: $\exists x \ \varphi, \ \forall x \ \varphi$ "P₃ is an induced subgraph of G": $\exists x \exists y \exists z \ \left(adj(x, y) \land adj(y, z) \land \neg adj(x, z) \right)$

"G has a dominating set of size 3":

$$\exists x_1 \exists x_2 \exists x_3 \forall y \ \bigvee_{i \in \{1,2,3\}} \left(y = x_i \lor adj(x_i, y) \right)$$

FO MODEL CHECKING Input: a first-order formula φ and a graph *G*. Question: *G* satisfies φ ?

▶ On general graphs, the problem is AW[*]-hard.

▶ When is it **FPT**? i.e., solvable in time $f(|\varphi|, C) \cdot |G|^c$, for some function f and $c \ge 1$.

FO model checking is **FPT** on C.

[Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, & Toruńczyk, 2023] [Dreier, Mählmann, & Siebertz, 2023] Bonnet, Dreier, Gajarský, Kreutzer, Mählmann, Simon, & Toruńczyk, 2022 [Bonnet, Kim, Thomassé, & Watrigant, 2022] [Hliněný, Pokrývka, & Roy, 2019] [Gajarský, Kreutzer, Nešetřil, Ossona de Mendez, Pilipczuk, Siebertz, & Toruńczyk, 2018] [Grohe, Kreutzer, & Siebertz, 2017] Eickmever & Kawarabayashi, 2017 [Gaiarský, Hliněný, Lokshtanov, Obdržálek, & Ramanujan, 2016 [Dvořák, Kráľ, & Thomas, 2011] Dawar, Grohe, & Kreutzer, 2007 [Flum & Grohe, 2001] [Frick & Grohe, 2001] [Seese, 1996]

FO model checking is **FPT** on C.

How general \mathcal{C} can be?

[Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, & Toruńczyk, 2023] [Dreier, Mählmann, & Siebertz, 2023] [Bonnet, Dreier, Gajarský, Kreutzer, Mählmann, Simon, & Toruńczyk, 2022] [Bonnet, Kim, Thomassé, & Watrigant, 2022] [Hliněný, Pokrývka, & Roy, 2019] [Gajarský, Kreutzer, Nešetřil, Ossona de Mendez, Pilipczuk, Siebertz, & Toruńczyk, 2018] [Grohe, Kreutzer, & Siebertz, 2017] [Grohe, Kreutzer, & Siebertz, 2017] [Gajarský, Hliněný, Lokshtanov, Obdržálek, & Ramanujan, 2016] [Dvořák, Kráľ, & Thomas, 2011] [Dawar, Grohe, & Kreutzer, 2007] [Flum & Grohe, 2001] [Frick & Grohe, 2001] [Seese, 1996]

Extensions of FO ?

FO model checking is **FPT** on C.

How general C can be?

[Schirrmacher, Siebertz, Stamoulis, Thilikos, & Vigny, 2023]
[Golovach, Stamoulis, & Thilikos, 2023]
[Fomin, Golovach, Sau, Stamoulis, & Thilikos, 2023]
[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny, 2022]
[Schirrmacher, Siebertz, & Vigny, 2022]
[Nešetřil, Ossona de Mendez, & Siebertz, 2022]
[Grange, 2021]
[Berkholz, Keppeler, & Schweikardt, 2018]
[Grohe & Schweikardt, 2018]
[van den Heuvel, Kreutzer, Pilipczuk, Quiroz, Rabinovich, & Siebertz, 2017]

[Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, & Toruńczyk, 2023] [Dreier, Mählmann, & Siebertz, 2023] [Bonnet, Dreier, Gajarský, Kreutzer, Mählmann, Simon, & Toruńczyk, 2022] [Bonnet, Kim, Thomassé, & Watrigant, 2022] [Hliněný, Pokrývka, & Roy, 2019] [Gajarský, Kreutzer, Nešetřil, Ossona de Mendez, Pilipczuk, Siebertz, & Toruńczyk, 2018] [Grohe, Kreutzer, & Siebertz, 2017] [Eickmeyer & Kawarabayashi, 2017] [Gajarský, Hliněný, Lokshtanov, Obdržálek, & Ramanujan, 2016] [Dvořák, Král, & Thomas, 2011] [Dawar, Grohe, & Kreutzer, 2007] [Flum & Grohe, 2001] [Frick & Grohe, 2001] [Seese, 1996]

Extensions of FO ?

FO model checking is **FPT** on C.

How general C can be?

[Schirrmacher, Siebertz, Stamoulis, Thilikos, & Vigny, 2023]
[Golovach, Stamoulis, & Thilikos, 2023]
[Fomin, Golovach, Sau, Stamoulis, & Thilikos, 2023]
[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny, 2022]
[Schirrmacher, Siebertz, & Vigny, 2022]
[Mešetřil, Ossona de Mendez, & Siebertz, 2022]
[Grange, 2021]
[Berkholz, Keppeler, & Schweikardt, 2018]
[Grohe & Schweikardt, 2018]
[van den Heuvel, Kreutzer, Pilipczuk, Quiroz, Rabinovich, & Siebertz, 2017]

What about "elementarily-**FPT**"?

What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

$$2^{2^{|\varphi|}} \cdot |G|^c$$
, for some constant $c \ge 1$,

What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

$$2^{2^{\cdot}} \underbrace{\mathcal{Q}^{(\varphi)}}_{g(|\varphi|)} \cdot |G|^c$$
, for some constant $c \geq 1$,

even for the class \mathcal{T} of trees. [Frick & Grohe, 2002]

What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

$$2^{2^{\frac{c^{-2^{|\varphi|}}}{c}}} \cdot |G|^c$$
, for some constant $c \ge 1$,

even for the class \mathcal{T} of trees. [Frick & Grohe, 2002]

Task: Improve the (parametric) dependence on $|\varphi|$ in the running time.

```
FO MODEL CHECKING (ON C)
Input: a first-order formula \varphi and a graph G \in C
Question: G satisfies \varphi?
```

What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

$$2^{2^{\frac{c^{2^{|\varphi|}}}{c}}} \cdot |G|^{c}$$
, for some constant $c \geq 1$,

even for the class \mathcal{T} of trees. [Frick & Grohe, 2002]

Task: Improve the (parametric) dependence on $|\varphi|$ in the running time.

```
FO MODEL CHECKING (ON C)
Input: a first-order formula \varphi and a graph G \in C
Question: G satisfies \varphi?
```

Meta-parameter: $h_{\mathcal{C}}$

What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

$$2^{2^{\frac{2^{|\varphi|}}{r}}} \cdot |G|^c$$
, for some constant $c \geq 1$,

even for the class \mathcal{T} of trees. [Frick & Grohe, 2002]

Task: Improve the (parametric) dependence on $|\varphi|$ in the running time.

```
FO MODEL CHECKING (ON C)
Input: a first-order formula \varphi and a graph G \in C
Question: G satisfies \varphi?
```

Meta-parameter: $h_{\mathcal{C}}$

Elementarily-FPT: running time
$$2^{2^{(2|\varphi|)}}_{\text{height } g(h_C)} \cdot |G|^c$$

elementary function: can be formed from

- successor function
- addition/subtraction/multiplication

using

- * compositions,
- * projections,
- * bounded additions/multiplications.

elementary function: can be formed from

- successor function
- addition/subtraction/multiplication

using

- * compositions,
- * projections,
- * bounded additions/multiplications.

Observation:

a function f is bounded by an elementary function \iff it is bounded by an *h*-fold exponential function for some fixed *h* elementary function: can be formed from

- successor function
- addition/subtraction/multiplication

using

- * compositions,
- * projections,
- * bounded additions/multiplications.

Observation:

```
a function f is bounded by an elementary function
it is bounded by an h-fold exponential function for some fixed h
Elementarily-FPT: running time 2^{2^{(2^{|\varphi|})}} \cdot |G|^c
```

The map of the elementarily-FPT universe

The map of the elementarily-FPT universe

Bounded pathwidth [Lampis, 2023]

Bounded degree [Frick & Grohe, 2002]

Bounded treedepth [Gajarský & Hlinený, 2015]

Exclusion of a tree as a topological minor

Exclusion of a tree as a topological minor

Elementary model checking for classes excluding a tree T as a topological minor?

Exclusion of a tree as a topological minor

Elementary model checking for classes excluding a tree T as a topological minor?

If yes, how more general can we get?

• $H^{(\leq r)}$:= replace every edge of H with a path of at most r internal vertices.

- $H^{(\leq r)}$:= replace every edge of H with a path of at most r internal vertices.
- *H* is an *r*-shallow topological minor of *G*, if $H^{(\leq r)} \subseteq G$.

- $H^{(\leq r)}$:= replace every edge of H with a path of at most r internal vertices.
- *H* is an *r*-shallow topological minor of *G*, if $H^{(\leq r)} \subseteq G$.
- TopMinors_r(C) := { $H \mid \exists G \in C : H$ is an *r*-shallow topological minor of G}

- $H^{(\leq r)}$:= replace every edge of H with a path of at most r internal vertices.
- *H* is an *r*-shallow topological minor of *G*, if $H^{(\leq r)} \subseteq G$.
- TopMinors_r(C) := { $H \mid \exists G \in C : H$ is an *r*-shallow topological minor of G}

- $H^{(\leq r)}$:= replace every edge of H with a path of at most r internal vertices.
- *H* is an *r*-shallow topological minor of *G*, if $H^{(\leq r)} \subseteq G$.
- TopMinors_r(C) := { $H \mid \exists G \in C : H$ is an *r*-shallow topological minor of G}
- The *tree rank* of a graph class C: max $\{d \in \mathbb{N} \mid \exists r \in \mathbb{N} : \mathcal{T}_d \subseteq \text{TopMinors}_r(C)\}$.

- $H^{(\leq r)}$:= replace every edge of H with a path of at most r internal vertices.
- *H* is an *r*-shallow topological minor of *G*, if $H^{(\leq r)} \subseteq G$.
- TopMinors_r(C) := { $H \mid \exists G \in C : H$ is an *r*-shallow topological minor of G}
- The *tree rank* of a graph class C: max $\{d \in \mathbb{N} \mid \exists r \in \mathbb{N} : \mathcal{T}_d \subseteq \text{TopMinors}_r(C)\}$.

What is bounded tree rank?

 \bullet The class ${\cal T}$ of all trees has unbounded tree rank.

- $\bullet\,$ The class ${\cal T}$ of all trees has unbounded tree rank.
- \mathcal{T}_d has tree rank d.

- $\bullet\,$ The class ${\cal T}$ of all trees has unbounded tree rank.
- \mathcal{T}_d has tree rank d.
- If C excludes some tree T as a *topological minor*, it has tree rank smaller than the depth of T.

- $\bullet\,$ The class ${\cal T}$ of all trees has unbounded tree rank.
- \mathcal{T}_d has tree rank d.
- If C excludes some tree T as a *topological minor*, it has tree rank smaller than the depth of T.
- $\bullet \ \mathcal{C}$ has bounded degree if and only if \mathcal{C} has tree rank 1.

- \bullet The class ${\cal T}$ of all trees has unbounded tree rank.
- \mathcal{T}_d has tree rank d.
- If C excludes some tree T as a *topological minor*, it has tree rank smaller than the depth of T.
- $\bullet \ \mathcal{C}$ has bounded degree if and only if \mathcal{C} has tree rank 1.
- The class C of graphs of pathwidth d has tree rank exactly d + 1.

Every tree as a topological minor and tree rank 2

Fact: A graph of minimum degree δ contains every tree on δ vertices as a subgraph. bounded tree rank \implies bounded degeneracy \implies bounded expansion

 $T_k^d :=$ tree of depth *d* and branching/size *k*.

Tree rank of C: the least number $d \in \mathbb{N}$ such that for every $r \in \mathbb{N}$ there is $k \in \mathbb{N}$ s.t. **no graph** in C contains T_k^{d+1} as an *r*-shallow topological minor. $T_k^d :=$ tree of depth d and branching/size k.

Tree rank of C: the least number $d \in \mathbb{N}$ such that for every $r \in \mathbb{N}$ there is $k \in \mathbb{N}$ s.t. **no graph** in C contains T_k^{d+1} as an *r*-shallow topological minor.

Tree rank of C: the least number $d \in \mathbb{N}$ such that there is a function $f : \mathbb{N} \to \mathbb{N}$ such that for every $r \in \mathbb{N}$, **no graph** in C contains $T_{f(r)}^{d+1}$ as an *r*-shallow topological minor. $T_k^d :=$ tree of depth d and branching/size k.

Tree rank of C: the least number $d \in \mathbb{N}$ such that for every $r \in \mathbb{N}$ there is $k \in \mathbb{N}$ s.t. **no graph** in C contains T_k^{d+1} as an *r*-shallow topological minor.

Tree rank of C: the least number $d \in \mathbb{N}$ such that there is a function $f : \mathbb{N} \to \mathbb{N}$ such that for every $r \in \mathbb{N}$, **no graph** in C contains $T_{f(r)}^{d+1}$ as an *r*-shallow topological minor.

Elementary tree rank of C: the least number $d \in \mathbb{N}$ such that there is an elementary function $f : \mathbb{N} \to \mathbb{N}$ such that for every $r \in \mathbb{N}$, no graph in C contains $T_{f(r)}^{d+1}$ as an *r*-shallow topological minor.

Theorem [Gajarský, Pilipczuk, Sokołowski, Stamoulis, Toruńczyk, 2023]

If C has bounded elementary tree rank, then FO model checking is elementarily-FPT on C.

Theorem [Gajarský, Pilipczuk, Sokołowski, Stamoulis, Toruńczyk, 2023]

If C has bounded elementary tree rank, then FO model checking is elementarily-FPT on C.

Corollary

If C excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on C.

Theorem [Gajarský, Pilipczuk, Sokołowski, Stamoulis, Toruńczyk, 2023]

If C has bounded elementary tree rank, then FO model checking is elementarily-FPT on C.

Corollary

If C excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on C.

Theorem [Gajarský, Pilipczuk, Sokołowski, Stamoulis, Toruńczyk, 2023]

Assume AW[*] \neq FPT. Let C be a monotone graph class. If FO model checking is elementarily-FPT on C, then C has bounded tree rank.

Theorem [Gajarský, Pilipczuk, Sokołowski, Stamoulis, Toruńczyk, 2023]

If C has bounded elementary tree rank, then FO model checking is elementarily-FPT on C.

Corollary

If C excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on C.

Theorem [Gajarský, Pilipczuk, Sokołowski, Stamoulis, Toruńczyk, 2023]

Assume AW[*] \neq FPT. Let C be a monotone graph class. If FO model checking is elementarily-FPT on C, then C has bounded tree rank.

Almost complete characterization of elementarily-FPT FO model checking on sparse classes.

Lemma

Let C be a graph class of tree rank d. Every formula φ is equivalent on C to a formula ψ of alternation rank 3d.

Also, if C has elementary tree rank d, then $|\psi|$ is elementary in $|\varphi|$.

Lemma

Let C be a graph class of tree rank d. Every formula φ is equivalent on C to a formula ψ of alternation rank 3d.

Also, if C has elementary tree rank d, then $|\psi|$ is elementary in $|\varphi|$.

$$\exists \forall \exists \dots \forall \exists \dots \forall \forall \dots \forall \dots \exists \exists \dots \exists$$

Lemma

Let C be a graph class of tree rank d. Every formula φ is equivalent on C to a formula ψ of alternation rank 3d.

Also, if C has elementary tree rank d, then $|\psi|$ is elementary in $|\varphi|$.

$$\exists \forall \exists \dots \forall \exists \dots \forall \exists \dots \exists \forall \forall \dots \forall \dots \exists \exists \dots \exists d \text{ alternations}$$

Theorem [Gajarský, Pilipczuk, Sokołowski, Stamoulis, Toruńczyk, 2023]

Let ${\mathcal C}$ be a monotone graph class. The following are equivalent:

 $\bullet \ \mathcal{C}$ has bounded tree rank

• $\exists k \in \mathbb{N}$ such that for every formula φ , there is an equivalent (on \mathcal{C}) formula ψ of alternation rank k.

m-batched splitter game of radius r:

m-batched splitter game of radius r:

Two players: Splitter and Localizer.

m-batched splitter game of radius r:

m-batched splitter game of radius r:

Two players: Splitter and Localizer. In each round of the game:

• Localizer picks $v \in V(G)$ and restricts to $G' := B_G^r(v)$.

m-batched splitter game of radius r:

Two players: Splitter and Localizer. In each round of the game:

• Localizer picks $v \in V(G)$ and restricts to $G' := B_G^r(v)$.

m-batched splitter game of radius r:

Two players: Splitter and Localizer. In each round of the game:

• Localizer picks $v \in V(G)$ and restricts to $G' := B_G^r(v)$.

m-batched splitter game of radius r:

- Localizer picks $v \in V(G)$ and restricts to $G' := B_G^r(v)$.
- **Splitter** deletes **at most** *m* **vertices** from *G'* and the game continues on the obtained graph.

m-batched splitter game of radius r:

- Localizer picks $v \in V(G)$ and restricts to $G' := B_G^r(v)$.
- **Splitter** deletes **at most** *m* **vertices** from *G'* and the game continues on the obtained graph.

m-batched splitter game of radius r:

- Localizer picks $v \in V(G)$ and restricts to $G' := B_G^r(v)$.
- **Splitter** deletes **at most** *m* **vertices** from *G'* and the game continues on the obtained graph.

m-batched splitter game of radius r:

- Localizer picks $v \in V(G)$ and restricts to $G' := B_G^r(v)$.
- Splitter deletes at most *m* vertices from *G'* and the game continues on the obtained graph.
- If no vertices remain, Splitter wins the game.

m-batched splitter game of radius r:

Two players: Splitter and Localizer. In each round of the game:

- Localizer picks $v \in V(G)$ and restricts to $G' := B_G^r(v)$.
- Splitter deletes at most *m* vertices from *G'* and the game continues on the obtained graph.
- If no vertices remain, Splitter wins the game.

Lemma

Let $d \in \mathbb{N}$. The following conditions are equivalent: (1) C has (elementary) tree rank d,

m-batched splitter game of radius r:

Two players: Splitter and Localizer. In each round of the game:

- Localizer picks $v \in V(G)$ and restricts to $G' := B_G^r(v)$.
- Splitter deletes at most *m* vertices from *G'* and the game continues on the obtained graph.
- If no vertices remain, Splitter wins the game.

Lemma

Let $d \in \mathbb{N}$. The following conditions are equivalent:

- (1) C has (elementary) tree rank d,
- (2) There is an (elementary) function f : N → N such that for every r ∈ N
 Splitter wins the f(r)-batched splitter game of radius r in at most d rounds, on every G ∈ C.

Lemma

Let $d \in \mathbb{N}$. The following conditions are equivalent:

- (1) C has (elementary) tree rank d,
- (2) There is an (elementary) function $f : \mathbb{N} \to \mathbb{N}$ such that for every $r \in \mathbb{N}$ Splitter wins the f(r)-batched splitter game of radius r in at most d rounds, on every $G \in C$.

Let $d \in \mathbb{N}$. The following conditions are equivalent:

- (1) C has (elementary) tree rank d,
- (2) There is an (elementary) function $f : \mathbb{N} \to \mathbb{N}$ such that for every $r \in \mathbb{N}$ Splitter wins the f(r)-batched splitter game of radius r in at most d rounds, on every $G \in C$.

Proof sketch:

Let $d \in \mathbb{N}$. The following conditions are equivalent:

- (1) C has (elementary) tree rank d,
- (2) There is an (elementary) function $f : \mathbb{N} \to \mathbb{N}$ such that for every $r \in \mathbb{N}$ Splitter wins the f(r)-batched splitter game of radius r in at most d rounds, on every $G \in C$.

Proof sketch:

 $(2) \implies (1)$

How can the Localiser survive d + 1 rounds in $(T_{f(r)}^{d+1})^{(\leq r)}$ (for radius d(r+1))?

Let $d \in \mathbb{N}$. The following conditions are equivalent:

- (1) C has (elementary) tree rank d,
- (2) There is an (elementary) function $f : \mathbb{N} \to \mathbb{N}$ such that for every $r \in \mathbb{N}$ Splitter wins the f(r)-batched splitter game of radius r in at most d rounds, on every $G \in C$.

Proof sketch:

 $(2) \implies (1)$

How can the Localiser survive d + 1 rounds in $(T_{f(r)}^{d+1})^{(\leq r)}$ (for radius d(r+1))?

 $(1) \implies (2)$

Let $d \in \mathbb{N}$. The following conditions are equivalent:

- (1) C has (elementary) tree rank d,
- (2) There is an (elementary) function $f : \mathbb{N} \to \mathbb{N}$ such that for every $r \in \mathbb{N}$ Splitter wins the f(r)-batched splitter game of radius r in at most d rounds, on every $G \in C$.

Proof sketch:

 $(2) \implies (1)$

How can the Localiser survive d + 1 rounds in $(T_{f(r)}^{d+1})^{(\leq r)}$ (for radius d(r+1))?

(1) \implies (2) \triangleright Let $v \in V(G)$ and $S \subseteq B_G^{(\leq r)}(v)$. If $|S| > t^r$, there is an $(\leq r)$ -subdivided *t*-star in $B_G^{(\leq r)}(v)$ with root *v* and leaves $s_1, \ldots, s_t \in S$.

Let $d \in \mathbb{N}$. The following conditions are equivalent:

- (1) C has (elementary) tree rank d,
- (2) There is an (elementary) function $f : \mathbb{N} \to \mathbb{N}$ such that for every $r \in \mathbb{N}$ Splitter wins the f(r)-batched splitter game of radius r in at most d rounds, on every $G \in C$.

Proof sketch:

 $(2)\implies(1)$

How can the Localiser survive d + 1 rounds in $(T_{f(r)}^{d+1})^{(\leq r)}$ (for radius d(r+1))?

(1) \implies (2) \triangleright Let $v \in V(G)$ and $S \subseteq B_G^{(\leq r)}(v)$. If $|S| > t^r$, there is an $(\leq r)$ -subdivided *t*-star in $B_G^{(\leq r)}(v)$ with root v and leaves $s_1, \ldots, s_t \in S$.

 $|\{\text{``candidate roots'' for } T_{k'}^i \text{ as an } r\text{-shallow topological minor in } B_G^{(\leq r)}(v)\}| \leq f(d, r, k)$

Collapse of FO alternation hierarchy

Let C be a graph class of tree rank d.

Every formula φ is equivalent on C to a formula ψ of alternation rank 3d.

Collapse of FO alternation hierarchy

Let \mathcal{C} be a graph class of tree rank d. Every formula φ is equivalent on \mathcal{C} to a formula ψ of alternation rank 3d.

Proof sketch:

• Gaifman's Locality Theorem.

Collapse of FO alternation hierarchy

Let C be a graph class of tree rank d. Every formula φ is equivalent on C to a formula ψ of alternation rank 3d.

Proof sketch:

• Gaifman's Locality Theorem.

"for every FO-formula φ , there is a radius r such that the satisfaction of φ in G only depends on FO-definable properties of radius-r balls in G."

Collapse of FO alternation hierarchy

Let C be a graph class of tree rank d. Every formula φ is equivalent on C to a formula ψ of alternation rank 3d.

Proof sketch:

• Gaifman's Locality Theorem.

"for every FO-formula φ , there is a radius r such that the satisfaction of φ in G only depends on FO-definable properties of radius-r balls in G."

Let $d \in \mathbb{N}$. The following conditions are equivalent:

- (1) C has (elementary) tree rank d,
- (2) There is an (elementary) function f : N → N such that for every r ∈ N Splitter wins the f(r)-batched splitter game of radius r in at most d rounds, on every G ∈ C.

Collapse of FO alternation hierarchy

Let C be a graph class of tree rank d. Every formula φ is equivalent on C to a formula ψ of alternation rank 3d.

Proof sketch:

• Gaifman's Locality Theorem.

"for every FO-formula φ , there is a radius r such that the satisfaction of φ in G only depends on FO-definable properties of radius-r balls in G."

Let $d \in \mathbb{N}$. The following conditions are equivalent:

- (1) C has (elementary) tree rank d,
- (2) There is an (elementary) function f : N → N such that for every r ∈ N Splitter wins the f(r)-batched splitter game of radius r in at most d rounds, on every G ∈ C.

• Apply induction on every radius-r ball in G, after removing f(r) vertices.

How to do elementary FO model checking?

How to do elementary FO model checking?

using FO model checking algorithm on bounded expansion classes [Dvořák, Král, & Thomas, 2014]

(which is elementarily-FPT for sentences of *constant* alternation rank).

How to do elementary FO model checking?

using FO model checking algorithm on bounded expansion classes [Dvořák, Král, & Thomas, 2014]

(which is elementarily-FPT for sentences of *constant* alternation rank).

The collapse of the FO alternation hierarchy on bounded tree rank classes implies the following:

If two vertices have the same "constant alternation rank"-type, then they have the same q-type.

Conclusion

Theorem [Gajarský, Pilipczuk, Sokołowski, *Stamoulis*, Toruńczyk, 2023] If C has bounded elementary tree rank, then FO model checking is elementarily-FPT on C.

Corollary

If C excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on C.

Theorem [Gajarský, Pilipczuk, Sokołowski, *Stamoulis*, Toruńczyk, 2023] Assume AW[*] \neq FPT. Let C be a monotone graph class. If FO model checking is elementarily-FPT on C, then C has bounded tree rank.

Almost complete characterization of elementarily-FPT FO model checking on sparse classes.

Conclusion

Theorem [Gajarský, Pilipczuk, Sokołowski, *Stamoulis*, Toruńczyk, 2023] If C has bounded elementary tree rank, then FO model checking is elementarily-FPT on C.

Corollary

If C excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on C.

Theorem [Gajarský, Pilipczuk, Sokołowski, *Stamoulis*, Toruńczyk, 2023] Assume AW[*] \neq FPT. Let C be a monotone graph class. If FO model checking is elementarily-FPT on C, then C has bounded tree rank.

Almost complete characterization of elementarily-FPT FO model checking on sparse classes.

What about dense classes?

Tree rank of C: the largest number $d \in \mathbb{N}$ such that there is an $r \in \mathbb{N}$ such that $\mathcal{T}_d \subseteq \text{TopMinors}_r(C)$.

Tree rank of C: the largest number $d \in \mathbb{N}$ such that there is an $r \in \mathbb{N}$ such that $\mathcal{T}_d \subseteq \text{TopMinors}_r(C)$.

Rank of C: the largest number $d \in \mathbb{N}$ such that C transduces \mathcal{T}_d .

Tree rank of C: the largest number $d \in \mathbb{N}$ such that there is an $r \in \mathbb{N}$ such that $\mathcal{T}_d \subseteq \text{TopMinors}_r(\mathcal{C})$.

Rank of C: the largest number $d \in \mathbb{N}$ such that C transduces \mathcal{T}_d .

Conjecture:

A hereditary graph class C has elementarily-FPT model checking if and only if it has bounded rank.

Tree rank of C: the largest number $d \in \mathbb{N}$ such that there is an $r \in \mathbb{N}$ such that $\mathcal{T}_d \subseteq \text{TopMinors}_r(\mathcal{C})$.

Rank of C: the largest number $d \in \mathbb{N}$ such that C transduces \mathcal{T}_d .

Conjecture:

A hereditary graph class C has elementarily-FPT model checking if and only if it has bounded rank.

Conjecture:

Let C be a hereditary graph class. C has bounded rank $\iff \exists k \in \mathbb{N}$ such that every φ is equivalent on C to a ψ of alternation rank k. A graph class $\mathcal C$ is weakly sparse if it excludes some biclique as a subgraph.

A graph class \mathcal{C} is weakly sparse if it excludes some biclique as a subgraph.

Theorem [Gajarský, Pilipczuk, Sokołowski, *Stamoulis*, Toruńczyk, 2023] Let C be a weakly sparse graph class. C has bounded tree rank $\iff C$ has bounded rank. A graph class $\mathcal C$ is weakly sparse if it excludes some biclique as a subgraph.

```
Theorem [Gajarský, Pilipczuk, Sokołowski, Stamoulis, Toruńczyk, 2023]
Let C be a weakly sparse graph class. C has bounded tree rank \iff C has bounded rank.
```

Conjecture:

A hereditary graph class $\mathcal C$ has elementarily-FPT model checking if and only if it has bounded rank.

Conjecture:

Let C be a hereditary graph class.

 \mathcal{C} has bounded rank $\iff \exists k \in \mathbb{N}$ such that every φ is equivalent on \mathcal{C} to a ψ of alternation rank k.

Merci!