Elementary first-order model checking for sparse graphs

Jakub Gajarský
Michał Pilipczuk
Marek Sokołowski
Giannos Stamoulis
Szymon Toruńczyk

Institute of Informatics, University of Warsaw, Poland

14.12.2023
JCALM 2023
Model checking first-order formulas (on graphs)

first-order logic (**FO**):

Atomic formulas: \(x = y, \ adj(x, y) \)
Logical connectives: \(\varphi \land \psi, \ \varphi \lor \psi, \ \neg \varphi \).
Quantifiers: \(\exists x \ \varphi, \ \forall x \ \varphi \)
Model checking first-order formulas (on graphs)

First-order logic (FO):

Atomic formulas: $x = y$, $\text{adj}(x, y)$
Logical connectives: $\varphi \land \psi$, $\varphi \lor \psi$, $\neg \varphi$
Quantifiers: $\exists x \varphi$, $\forall x \varphi$

"P_3 is an induced subgraph of G":

$\exists x \exists y \exists z \left(\text{adj}(x, y) \land \text{adj}(y, z) \land \neg \text{adj}(x, z) \right)$

"G has a dominating set of size 3":

$\exists x_1 \exists x_2 \exists x_3 \forall y \bigvee_{i \in \{1, 2, 3\}} \left(y = x_i \lor \text{adj}(x_i, y) \right)$
Model checking first-order formulas (on graphs)

first-order logic (FO):

Atomic formulas: $x = y$, $\text{adj}(x, y)$

Logical connectives: $\varphi \land \psi$, $\varphi \lor \psi$, $\neg \varphi$.

Quantifiers: $\exists x \varphi$, $\forall x \varphi$

“P_3 is an induced subgraph of G”:

$\exists x \exists y \exists z \left(\text{adj}(x, y) \land \text{adj}(y, z) \land \neg \text{adj}(x, z) \right)$

“G has a dominating set of size 3”:

$\exists x_1 \exists x_2 \exists x_3 \forall y \left(\bigvee_{i \in \{1,2,3\}} \left(y = x_i \lor \text{adj}(x_i, y) \right) \right)$

FO Model Checking

Input: a first-order formula φ and a graph G.

Question: G satisfies φ?
Model checking first-order formulas (on graphs)

first-order logic (FO):

Atomic formulas: $x = y$, $adj(x, y)$
Logical connectives: $\varphi \land \psi$, $\varphi \lor \psi$, $\neg \varphi$.
Quantifiers: $\exists x \varphi$, $\forall x \varphi$

"P_3 is an induced subgraph of G":

$\exists x \exists y \exists z \left(adj(x, y) \land adj(y, z) \land \neg adj(x, z) \right)$

"G has a dominating set of size 3":

$\exists x_1 \exists x_2 \exists x_3 \forall y \bigvee_{i \in \{1,2,3\}} \left(y = x_i \lor adj(x_i, y) \right)$

FO Model Checking
Input: a first-order formula φ and a graph G.
Question: G satisfies φ?

On general graphs, the problem is AW[*]-hard.
Model checking first-order formulas (on graphs)

first-order logic (FO):

Atomic formulas: $x = y$, $\text{adj}(x, y)$
Logical connectives: $\varphi \land \psi$, $\varphi \lor \psi$, $\neg \varphi$
Quantifiers: $\exists x \varphi$, $\forall x \varphi$

“P_3 is an induced subgraph of G”:
$\exists x \exists y \exists z \left(\text{adj}(x, y) \land \text{adj}(y, z) \land \neg \text{adj}(x, z) \right)$

“G has a dominating set of size 3”:
$\exists x_1 \exists x_2 \exists x_3 \forall y \mathop{\lor}_{i \in \{1, 2, 3\}} \left(y = x_i \lor \text{adj}(x_i, y) \right)$

FO Model Checking
Input: a first-order formula φ and a graph G. Question: G satisfies φ?

- On general graphs, the problem is AW[*]-hard.
- When is it FPT? i.e., solvable in time $f(|\varphi|, C) \cdot |G|^c$, for some function f and $c \geq 1$.

\[\]
The three components of the model checking question

FO model checking is **FPT** on C.
The three components of the model checking question

[Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, & Toruńczyk, 2023]
[Dreier, Mählmann, & Siebertz, 2023]
[Bonnet, Dreier, Gajarský, Kreutzer, Mählmann, Simon, & Toruńczyk, 2022]
[Bonnet, Kim, Thomassé, & Watrigant, 2022]
[Hliněný, Pokrývka, & Roy, 2019]
[Gajarský, Kreutzer, Nešetřil, Ossona de Mendez, Pilipczuk, Siebertz, & Toruńczyk, 2018]
[Grohe, Kreutzer, & Siebertz, 2017]
[Eickmeyer & Kawarabayashi, 2017]
[Gajarský, Hliněný, Lokshtanov, Obdržálek, & Ramanujan, 2016]
[Dvořák, Král, & Thomas, 2011]
[Dawar, Grohe, & Kreutzer, 2007]
[Flum & Grohe, 2001]
[Frick & Grohe, 2001]
[Seese, 1996]

FO model checking is FPT on C.

How general C can be?
The three components of the model checking question

[Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, & Toruńczyk, 2023]
[Dreier, Mählmann, & Siebertz, 2023]
[Bonnet, Dreier, Gajarský, Kreutzer, Mählmann, Simon, & Toruńczyk, 2022]
[Bonnet, Kim, Thomassé, & Watrigant, 2022]
[Hliněný, Pokrývka, & Roy, 2019]
[Gajarský, Kreutzer, Nešetřil, Ossona de Mendez, Pilipczuk, Siebertz, & Toruńczyk, 2018]
[Grohe, Kreutzer, & Siebertz, 2017]
[Eickmeyer & Kawarabayashi, 2017]
[Gajarský, Hliněný, Lokshtanov, Obdržálek, & Ramanujan, 2016]
[Dvořák, Král, & Thomas, 2011]
[Dawar, Grohe, & Kreutzer, 2007]
[Flum & Grohe, 2001]
[Frick & Grohe, 2001]
[Seese, 1996]

Extensions of \(\text{FO} \) ? \(\text{FO} \) model checking is \(\text{FPT} \) on \(C \). How general \(C \) can be?

[Schirrmacher, Siebertz, Stamoulis, Thilikos, & Vigny, 2023]
[Golovach, Stamoulis, & Thilikos, 2023]
[Fomin, Golovach, Sau, Stamoulis, & Thilikos, 2023]
[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny, 2022]
[Schirrmacher, Siebertz, & Vigny, 2022]
[Nešetřil, Ossona de Mendez, & Siebertz, 2022]
[Grange, 2021]
[Berkholz, Keppeler, & Schweikardt, 2018]
[Grohe & Schweikardt, 2018]
[van den Heuvel, Kreutzer, Pilipczuk, Quiroz, Rabinovich, & Siebertz, 2017]
The three components of the model checking question

[Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, & Toruńczyk, 2023]
[Dreier, Mählmann, & Siebertz, 2023]
[Bonnet, Dreier, Gajarský, Kreutzer, Mählmann, Simon, & Toruńczyk, 2022]
[Bonnet, Kim, Thomassé, & Watrigant, 2022]
[Hliněný, Pokrývka, & Roy, 2019]
[Gajarský, Kreutzer, Nešetřil, Ossona de Mendez, Pilipczuk, Siebertz, & Toruńczyk, 2018]
[Grohe, Kreutzer, & Siebertz, 2017]
[Eickmeyer & Kawarabayashi, 2017]
[Gajarský, Hliněný, Lokshtanov, Obdržálek, & Ramanujan, 2016]
[Dvořák, Král, & Thomas, 2011]
[Dawar, Grohe, & Kreutzer, 2007]
[Flum & Grohe, 2001]
[Frick & Grohe, 2001]
[Seese, 1996]

Extensions of \(\text{FO} \)?

\(\text{FO} \) model checking is \(\text{FPT} \) on \(C \).

How general \(C \) can be?

What about “elementarily-\(\text{FPT} \)”?
What is the (parametric) dependence on $|\phi|$ in the running time of a model checking algorithm?

Even for the class T of trees. [Frick & Grohe, 2002]

Task:
Improve the (parametric) dependence on $|\phi|$ in the running time.

Input: a first-order formula ϕ and a graph $G \in C$

Question: G satisfies ϕ?

Meta-parameter:
Elementarily-FPT: running time $2^{2^n \cdots^{2^n}} |\phi| |\{z\}| \cdot |G| c^3 / 20$
“Elementarily-FPT” programme

What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?
“Elementarily-FPT” programme

What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

$$2^{2^{|\varphi|}} \cdot |G|^c, \text{ for some constant } c \geq 1,$$

$\text{height } g(|\varphi|)$
“Elementarily-FPT” programme

What is the (parametric) dependence on $|\phi|$ in the running time of a model checking algorithm?

$$2^{2^{|\phi|}} \cdot |G|^c,$$

for some constant $c \geq 1$, even for the class \mathcal{T} of trees. [Frick & Grohe, 2002]
“Elementarily-FPT” programme

What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

$$\underbrace{2^2 \cdot 2^{|\varphi|}}_{\text{height } g(|\varphi|)} \cdot |G|^c,$$

for some constant $c \geq 1$,

even for the class \mathcal{T} of trees. [Frick & Grohe, 2002]

Task: Improve the (parametric) dependence on $|\varphi|$ in the running time.

FO Model Checking (on \mathcal{C})
Input: a first-order formula φ and a graph $G \in \mathcal{C}$
Question: G satisfies φ?
“Elementarily-FPT” programme

What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

$$2^{2^{2|\varphi|}} \cdot |G|^c,$$

for some constant $c \geq 1$, even for the class \mathcal{T} of trees. [Frick & Grohe, 2002]

Task: Improve the (parametric) dependence on $|\varphi|$ in the running time.

FO Model Checking (on \mathcal{C})
Input: a first-order formula φ and a graph $G \in \mathcal{C}$
Question: G satisfies φ?

Meta-parameter: h_C
“Elementarily-FPT” programme

What is the (parametric) dependence on $|\varphi|$ in the running time of a model checking algorithm?

$$2^{2^{|\varphi|}} \cdot |G|^c,$$ for some constant $c \geq 1$,

even for the class \mathcal{T} of trees. [Frick & Grohe, 2002]

Task: Improve the (parametric) dependence on $|\varphi|$ in the running time.

FO Model Checking (on \mathcal{C})

- **Input:** a first-order formula φ and a graph $G \in \mathcal{C}$
- **Question:** G satisfies φ?

Elementarily-FPT: running time

$$2^{2^{|\varphi|}} \cdot |G|^c \cdot \text{height } g(h_{\mathcal{C}})$$
elementary function: can be formed from

- successor function
- addition/subtraction/multiplication

using

* compositions,
* projections,
* bounded additions/multiplications.
elementary function: can be formed from
- successor function
- addition/subtraction/multiplication

using
* compositions,
* projections,
* bounded additions/multiplications.

Observation:

A function \(f \) is bounded by an elementary function \(\iff \) it is bounded by an \(h \)-fold exponential function for some fixed \(h \).
elementary function: can be formed from
- successor function
- addition/subtraction/multiplication

using
* compositions,
* projections,
* bounded additions/multiplications.

Observation:

a function f is bounded by an elementary function
\[\iff \]

it is bounded by an h-fold exponential function for some fixed h

Elementarily-FPT: running time
\[
2^{2^{\varphi}} \cdot |G|^c \cdot \text{height } g(h_c)
\]
The map of the elementarily-FPT universe

- **Bounded pathwidth**
 [Lampis, 2023]

- **Bounded treedepth**
 [Gajarský & Hlinený, 2015]

- **Bounded degree**
 [Frick & Grohe, 2002]
The map of the elementarily-FPT universe

- Bounded pathwidth
 [Lampis, 2023]
- Bounded treedepth
 [Gajarský & Hlinený, 2015]
- ?
- Bounded degree
 [Frick & Grohe, 2002]
What **bounded degree** and **bounded pathwidth** have **in common**?
What \textit{bounded degree} and \textit{bounded pathwidth} have \textit{in common}?

\textbf{Exclusion of a tree as a topological minor}
What bounded degree and bounded pathwidth have in common?

Exclusion of a tree as a topological minor

Elementary model checking for classes excluding a tree T as a topological minor?
What bounded degree and bounded pathwidth have in common?

Exclusion of a tree as a topological minor

Elementary model checking for classes *excluding a tree* T *as a topological minor*?

If yes, how more general can we get?
Definitions:

\[H(\leq r) := \text{replace every edge of } H \text{ with a path of at most } r \text{ internal vertices.} \]

\[H \text{ is an } r\text{-shallow topological minor of } G, \text{ if } H(\leq r) \subseteq G. \]

\[\text{TopMinors}_r(C) := \{ H | \exists G \in C: H \text{ is an } r\text{-shallow topological minor of } G \} \]

\[T_d := \text{class of all trees of depth } d. \]

\[\bullet \text{The tree rank of a graph class } C := \max \{ d \in \mathbb{N} | \exists r \in \mathbb{N}: T_d \subseteq \text{TopMinors}_r(C) \}. \]
Definitions:

- $H^{(\leq r)} :=$ replace every edge of H with a path of at most r internal vertices.
Definitions:
- \(H^{(\leq r)} := \) replace every edge of \(H \) with a path of at most \(r \) internal vertices.
- \(H \) is an \(r \)-shallow topological minor of \(G \), if \(H^{(\leq r)} \subseteq G \).
Definitions:

- $H^{(\leq r)} :=$ replace every edge of H with a path of at most r internal vertices.
- H is an r-shallow topological minor of G, if $H^{(\leq r)} \subseteq G$.
- $\text{TopMinors}_r(C) := \{H \mid \exists G \in C : H$ is an r-shallow topological minor of $G\}$
Definitions:

- $H^{(\leq r)} :=$ replace every edge of H with a path of at most r internal vertices.
- H is an r-shallow topological minor of G, if $H^{(\leq r)} \subseteq G$.
- $\text{TopMinors}_r(C) := \{H \mid \exists G \in C : H$ is an r-shallow topological minor of $G\}$
- $\mathcal{T}_d :=$ class of all trees of depth d. (has depth 2.)
Definitions:

- $H^{(\leq r)} :=$ replace every edge of H with a path of at most r internal vertices.

- H is an r-shallow topological minor of G, if $H^{(\leq r)} \subseteq G$.

- $\text{TopMinors}_r(C) := \{H \mid \exists G \in C : H$ is an r-shallow topological minor of $G\}$

- $T_d :=$ class of all trees of depth d. (A tree with depth 2 is shown.)

- The tree rank of a graph class C: $\max\{d \in \mathbb{N} \mid \exists r \in \mathbb{N} : T_d \subseteq \text{TopMinors}_r(C)\}$.
Definitions:

- $H^{(\leq r)} :=$ replace every edge of H with a path of at most r internal vertices.
- H is an r-shallow topological minor of G, if $H^{(\leq r)} \subseteq G$.
- $\text{TopMinors}_r(C) := \{H \mid \exists G \in C : H$ is an r-shallow topological minor of $G\}$
- $T_d :=$ class of all trees of depth d. (has depth 2.)

- The tree rank of a graph class C: $\max\{d \in \mathbb{N} \mid \exists r \in \mathbb{N} : T_d \subseteq \text{TopMinors}_r(C)\}$.
What is bounded tree rank?

- The class \mathcal{T} of all trees has unbounded tree rank.
What is bounded tree rank?

- The class \mathcal{T} of all trees has \textit{unbounded} tree rank.
- \mathcal{T}_d has tree rank d.
What is bounded tree rank?

- The class \mathcal{T} of all trees has unbounded tree rank.
- \mathcal{T}_d has tree rank d.
- If \mathcal{C} excludes some tree T as a topological minor, it has tree rank smaller than the depth of T.
What is bounded tree rank?

- The class \mathcal{T} of all trees has unbounded tree rank.
- \mathcal{T}_d has tree rank d.
- If \mathcal{C} excludes some tree T as a topological minor, it has tree rank smaller than the depth of T.
- \mathcal{C} has bounded degree if and only if \mathcal{C} has tree rank 1.
What is bounded tree rank?

- The class \mathcal{T} of all trees has unbounded tree rank.
- \mathcal{T}_d has tree rank d.
- If \mathcal{C} excludes some tree T as a topological minor, it has tree rank smaller than the depth of T.
- \mathcal{C} has bounded degree if and only if \mathcal{C} has tree rank 1.
- The class \mathcal{C} of graphs of pathwidth d has tree rank exactly $d + 1$.
Is this just excluding a tree as a topological minor?
Is this just excluding a tree as a topological minor? **NO**
Is this just excluding a tree as a topological minor? NO
Is this just excluding a tree as a topological minor? **NO**
Is this just excluding a tree as a topological minor? **NO**

Every tree as a topological minor and tree rank 2
Fact: A graph of minimum degree δ contains every tree on δ vertices as a subgraph.

$\text{bounded tree rank} \Rightarrow \text{bounded degeneracy} \Rightarrow \text{bounded expansion}$
Fact: A graph of minimum degree δ contains every tree on δ vertices as a subgraph.

$\text{bounded tree rank} \Rightarrow \text{bounded degeneracy} \Rightarrow \text{bounded expansion}$
Fact:
A graph of minimum degree δ contains every tree on δ vertices as a subgraph.

bounded expansion \Rightarrow bounded tree rank \Rightarrow nowhere dense

excluding a tree as a topological minor

bounded tree rank =

\Rightarrow

bounded degeneracy \Rightarrow

bounded expansion
Fact: A graph of minimum degree δ contains every tree on δ vertices as a subgraph.

bounded tree rank \implies bounded degeneracy \implies bounded expansion
$T^d_k :=$ tree of depth d and branching/size k.

Tree rank of C:
The least number $d \in \mathbb{N}$ such that for every $r \in \mathbb{N}$ there is $k \in \mathbb{N}$ s.t. no graph in C contains T^{d+1}_k as an r-shallow topological minor.
$T_k^d :=$ tree of depth d and branching/size k.

Tree rank of C:
the least number $d \in \mathbb{N}$ such that
for every $r \in \mathbb{N}$ there is $k \in \mathbb{N}$ s.t. no graph in C contains T_k^{d+1} as an r-shallow topological minor.

Tree rank of C:
the least number $d \in \mathbb{N}$ such that there is a function $f : \mathbb{N} \to \mathbb{N}$ such that
for every $r \in \mathbb{N}$, no graph in C contains $T_{f(r)}^{d+1}$ as an r-shallow topological minor.
\(T^d_k := \) tree of depth \(d \) and branching/size \(k \).

Tree rank of \(C \):
the least number \(d \in \mathbb{N} \) such that
for every \(r \in \mathbb{N} \) there is \(k \in \mathbb{N} \) s.t. no graph in \(C \) contains \(T^{d+1}_k \) as an \(r \)-shallow topological minor.

Tree rank of \(C \):
the least number \(d \in \mathbb{N} \) such that there is a function \(f : \mathbb{N} \to \mathbb{N} \) such that
for every \(r \in \mathbb{N} \), no graph in \(C \) contains \(T^{d+1}_{f(r)} \) as an \(r \)-shallow topological minor.

Elementary tree rank of \(C \):
the least number \(d \in \mathbb{N} \) such that there is an elementary function \(f : \mathbb{N} \to \mathbb{N} \) such that
for every \(r \in \mathbb{N} \), no graph in \(C \) contains \(T^{d+1}_{f(r)} \) as an \(r \)-shallow topological minor.
Elementary FO model checking on sparse classes

Theorem [Gajarský, Pilipczuk, Sokołowski, Stamoulis, Toruńczyk, 2023]

If C has bounded elementary tree rank, then FO model checking is elementarily-FPT on C.

Corollary

If C excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on C.

Theorem [Gajarský, Pilipczuk, Sokołowski, Stamoulis, Toruńczyk, 2023]

Assume AW[*]̸=FPT. Let C be a monotone graph class. If FO model checking is elementarily-FPT on C, then C has bounded tree rank.

Almost complete characterization of elementarily-FPT FO model checking on sparse classes.
Elementary FO model checking on sparse classes

Theorem [Gajarský, Pilipczuk, Sokołowski, Stamoulis, Toruńczyk, 2023]

If C has **bounded elementary tree rank**, then FO model checking is **elementarily-FPT** on C.

Corollary

If C excludes a fixed tree as a topological minor, then FO model checking is **elementarily-FPT** on C.

Almost complete characterization of elementarily-FPT FO model checking on sparse classes.
Elementary FO model checking on sparse classes

Theorem [Gajarský, Pilipczuk, Sokołowski, Stamoulis, Toruńczyk, 2023]

If C has **bounded elementary tree rank**, then FO model checking is **elementarily-FPT** on C.

Corollary

If C excludes a fixed tree as a topological minor, then FO model checking is **elementarily-FPT** on C.
Elementary FO model checking on sparse classes

Theorem [Gajarský, Pilipczuk, Sokołowski, Stamoulis, Toruńczyk, 2023]
If \mathcal{C} has bounded elementary tree rank, then FO model checking is elementarily-FPT on \mathcal{C}.

Corollary
If \mathcal{C} excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on \mathcal{C}.

Theorem [Gajarský, Pilipczuk, Sokołowski, Stamoulis, Toruńczyk, 2023]
Assume $\text{AW}[\ast] \neq \text{FPT}$. Let \mathcal{C} be a monotone graph class.
If FO model checking is elementarily-FPT on \mathcal{C}, then \mathcal{C} has bounded tree rank.
Elementary FO model checking on sparse classes

Theorem [Gajarský, Pilipczuk, Sokołowski, Stamoulis, Toruńczyk, 2023]
If \(C \) has bounded elementary tree rank, then FO model checking is elementarily-FPT on \(C \).

Corollary
If \(C \) excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on \(C \).

Theorem [Gajarský, Pilipczuk, Sokołowski, Stamoulis, Toruńczyk, 2023]
Assume AW[*] ≠ FPT. Let \(C \) be a monotone graph class. If FO model checking is elementarily-FPT on \(C \), then \(C \) has bounded tree rank.

Almost complete characterization of elementarily-FPT FO model checking on sparse classes.
Collapse of FO alternation hierarchy

Lemma

Let \(C \) be a graph class of tree rank \(d \).
Every formula \(\phi \) is equivalent on \(C \) to a formula \(\psi \) of alternation rank \(3d \).

Also, if \(C \) has elementary tree rank \(d \), then \(|\psi| \) is elementary in \(|\phi| \).

\(\exists \forall \exists \exists \forall \exists \forall \forall \forall \).

Theorem

[Gajarský, Pilipczuk, Sokołowski, Stamoulis, Toruńczyk, 2023]

Let \(C \) be a monotone graph class. The following are equivalent:

\(C \) has bounded tree rank

\(\exists k \in \mathbb{N} \) such that for every formula \(\phi \), there is an equivalent (on \(C \)) formula \(\psi \) of alternation rank \(k \).
Collapse of FO alternation hierarchy

Lemma

Let C be a graph class of tree rank d. Every formula φ is equivalent on C to a formula ψ of alternation rank $3d$.

Also, if C has elementary tree rank d, then $|\psi|$ is elementary in $|\varphi|$.

Theorem [Gajarský, Pilipczuk, Sokołowski, Stamoulis, Toruńczyk, 2023]

Let C be a monotone graph class. The following are equivalent:

- C has bounded tree rank $\exists k \in \mathbb{N}$ such that for every formula φ, there is an equivalent (on C) formula ψ of alternation rank k.
Lemma

Let C be a graph class of tree rank d. Every formula φ is equivalent on C to a formula ψ of alternation rank $3d$.

Also, if C has elementary tree rank d, then $|\psi|$ is elementary in $|\varphi|$.
Collapse of FO alternation hierarchy

Lemma

Let C be a graph class of tree rank d. Every formula φ is equivalent on C to a formula ψ of alternation rank $3d$.

Also, if C has elementary tree rank d, then $|\psi|$ is elementary in $|\varphi|$.

Theorem [Gajarský, Pilipczuk, Sokołowski, Stamoulis, Toruńczyk, 2023]

Let C be a monotone graph class. The following are equivalent:

- C has bounded tree rank
- $\exists k \in \mathbb{N}$ such that for every formula φ, there is an equivalent (on C) formula ψ of alternation rank k.
Structural characterization of bounded tree rank

m-batched splitter game of radius r:
Structural characterization of bounded tree rank

m-batched splitter game of radius r:

Two players: \textbf{Splitter} and \textbf{Localizer}.
Structural characterization of bounded tree rank

m-batched splitter game of radius r:

Two players: **Splitter** and **Localizer**. In each round of the game:
Structural characterization of bounded tree rank

m-batched splitter game of radius r:

Two players: **Splitter** and **Localizer**. In each round of the game:

- **Localizer** picks $v \in V(G)$ and restricts to $G' := B'_G(v)$.

Lemma

Let $d \in \mathbb{N}$. The following conditions are equivalent:

1. C has (elementary) tree rank d,
2. There is an (elementary) function $f: \mathbb{N} \to \mathbb{N}$ such that for every $r \in \mathbb{N}$ Splitter wins the $f(r)$-batched splitter game of radius r in at most d rounds, on every $G \in C$.

G
Structural characterization of bounded tree rank

m-batched splitter game of radius r:

Two players: **Splitter** and **Localizer**. In each round of the game:

- **Localizer** picks $v \in V(G)$ and restricts to $G' := B_r^G(v)$.

Let $d \in \mathbb{N}$. The following conditions are equivalent:

1. C has (elementary) tree rank d,
2. There is an (elementary) function $f : \mathbb{N} \to \mathbb{N}$ such that for every $r \in \mathbb{N}$ Splitter wins the $f(r)$-batched splitter game of radius r in at most d rounds, on every $G \in C$.

G

\[G \]

\[v \]

\[r \]
Structural characterization of bounded tree rank

m-batched splitter game of radius r:

Two players: **Splitter** and **Localizer**. In each round of the game:

- **Localizer** picks $v \in V(G)$ and restricts to $G' := B'_G(v)$.

Lemma

Let $d \in \mathbb{N}$. The following conditions are equivalent:

1. C has (elementary) tree rank d,
2. There is an (elementary) function $f: \mathbb{N} \to \mathbb{N}$ such that for every $r \in \mathbb{N}$ Splitter wins the $f(r)$-batched splitter game of radius r in at most d rounds, on every $G \in C$.

G'
Structural characterization of bounded tree rank

m-batched splitter game of radius r:

Two players: **Splitter** and **Localizer**. In each round of the game:

- **Localizer** picks $v \in V(G)$ and restricts to $G' := B'_G(v)$.
- **Splitter** deletes at most m vertices from G' and the game continues on the obtained graph.
Structural characterization of bounded tree rank

m-batched splitter game of radius r:

Two players: **Splitter** and **Localizer**. In each round of the game:

- **Localizer** picks $v \in V(G)$ and restricts to $G' := B^r_G(v)$.

- **Splitter** deletes at most m vertices from G' and the game continues on the obtained graph.
Structural characterization of bounded tree rank

\textit{m-batched splitter game of radius }r:\n
Two players: \textbf{Splitter} and \textbf{Localizer}. In each round of the game:

- \textbf{Localizer} picks \(v \in V(G)\) and restricts to \(G' := B'_G(v)\).

- \textbf{Splitter} deletes \textbf{at most} \(m\) \textbf{vertices} from \(G'\)
 and the game continues on the obtained graph.
Structural characterization of bounded tree rank

m-batched splitter game of radius r:

Two players: **Splitter** and **Localizer**. In each round of the game:

- **Localizer** picks $v \in V(G)$ and restricts to $G' := B_r^G(v)$.
- **Splitter** deletes at most m vertices from G' and the game continues on the obtained graph.
- If no vertices remain, **Splitter** wins the game.
Structural characterization of bounded tree rank

\textit{m-batched splitter game of radius} \(r\):

Two players: \textbf{Splitter} and \textbf{Localizer}. In each round of the game:

- \textbf{Localizer} picks \(v \in V(G)\) and restricts to \(G' := B_r^e(v)\).

- \textbf{Splitter} deletes \textbf{at most} \(m\) vertices from \(G'\) and the game continues on the obtained graph.

- If no vertices remain, \textbf{Splitter} wins the game.

\textbf{Lemma}

Let \(d \in \mathbb{N}\). The following conditions are equivalent:

1. \(\mathcal{C}\) has (elementary) tree rank \(d\),
Structural characterization of bounded tree rank

m-batched splitter game of radius r:

Two players: **Splitter** and **Localizer**. In each round of the game:

- **Localizer** picks $v \in V(G)$ and restricts to $G' := B'_G(v)$.
- **Splitter** deletes at most m vertices from G' and the game continues on the obtained graph.
- If no vertices remain, **Splitter** wins the game.

Lemma

Let $d \in \mathbb{N}$. The following conditions are equivalent:

1. \mathcal{C} has (elementary) tree rank d,
2. There is an (elementary) function $f : \mathbb{N} \to \mathbb{N}$ such that for every $r \in \mathbb{N}$ Splitter wins the $f(r)$-batched splitter game of radius r in at most d rounds, on every $G \in \mathcal{C}$.

Lemma

Let \(d \in \mathbb{N} \). The following conditions are equivalent:

1. \(\mathcal{C} \) has (elementary) tree rank \(d \),
2. There is an (elementary) function \(f : \mathbb{N} \to \mathbb{N} \) such that for every \(r \in \mathbb{N} \),

 Splitter wins the \(f(r) \)-batched splitter game of radius \(r \) in at most \(d \) rounds, on every \(G \in \mathcal{C} \).

Proof sketch:

\((2) \Rightarrow (1) \):

How can the Localiser survive \(d + 1 \) rounds in \((T_d + f(r)) \leq r \) (for radius \(d(r + 1) \))?

\((1) \Rightarrow (2) \):

Let \(v \in V(G) \) and \(S \subseteq B(\leq r) G(v) \).

If \(|S| > tr \), there is an \((\leq r) \)-subdivided \(t \)-star in \(B(\leq r) G(v) \) with root \(v \) and leaves \(s_1, \ldots, s_t \in S \).

\(\{ \text{"candidate roots" for } T_i \text{ as an } r \times \text{shallow topological minor in } B(\leq r) G(v) \} \leq f(d, r, k) \)
Lemma

Let $d \in \mathbb{N}$. The following conditions are equivalent:

1. \mathcal{C} has (elementary) tree rank d,
2. There is an (elementary) function $f : \mathbb{N} \to \mathbb{N}$ such that for every $r \in \mathbb{N}$, Splitter wins the $f(r)$-batched splitter game of radius r in at most d rounds, on every $G \in \mathcal{C}$.

Proof sketch:
Lemma

Let $d \in \mathbb{N}$. The following conditions are equivalent:

(1) \mathcal{C} has (elementary) tree rank d,

(2) There is an (elementary) function $f : \mathbb{N} \to \mathbb{N}$ such that for every $r \in \mathbb{N}$

Splitter wins the $f(r)$-batched splitter game of radius r in at most d rounds, on every $G \in \mathcal{C}$.

Proof sketch:

(2) \implies (1)

How can the Localiser survive $d + 1$ rounds in $(T_{f(r)}^{d+1})^{(\leq r)}$ (for radius $d(r + 1)$)?
Lemma

Let $d \in \mathbb{N}$. The following conditions are equivalent:

1. \mathcal{C} has (elementary) tree rank d,
2. There is an (elementary) function $f : \mathbb{N} \rightarrow \mathbb{N}$ such that for every $r \in \mathbb{N}$
 Splitter wins the $f(r)$-batched splitter game of radius r in at most d rounds, on every $G \in \mathcal{C}$.

Proof sketch:

(2) \implies (1)

How can the Localiser survive $d + 1$ rounds in $(T_{f(r)}^{d+1})^{(\leq r)}$ (for radius $d(r + 1)$)?

(1) \implies (2)
Lemma

Let $d \in \mathbb{N}$. The following conditions are equivalent:

1. \mathcal{C} has (elementary) tree rank d,
2. There is an (elementary) function $f : \mathbb{N} \rightarrow \mathbb{N}$ such that for every $r \in \mathbb{N}$, Splitter wins the $f(r)$-batched splitter game of radius r in at most d rounds, on every $G \in \mathcal{C}$.

Proof sketch:

(2) \implies (1)

How can the Localiser survive $d + 1$ rounds in $(T_{f(r)}^{d+1})^{(\leq r)}$ (for radius $d(r + 1)$)?

(1) \implies (2)

Let $v \in V(G)$ and $S \subseteq B_{G}^{(\leq r)}(v)$.

If $|S| > t^{r}$, there is an $(\leq r)$-subdivided t-star in $B_{G}^{(\leq r)}(v)$ with root v and leaves $s_1, \ldots, s_t \in S$.

\triangleright
Lemma

Let \(d \in \mathbb{N} \). The following conditions are equivalent:

1. \(\mathcal{C} \) has (elementary) tree rank \(d \),
2. There is an (elementary) function \(f : \mathbb{N} \to \mathbb{N} \) such that for every \(r \in \mathbb{N} \), Splitter wins the \(f(r) \)-batched splitter game of radius \(r \) in at most \(d \) rounds, on every \(G \in \mathcal{C} \).

Proof sketch:

\((2) \implies (1) \)

How can the Localiser survive \(d + 1 \) rounds in \((T^{d+1}_{d(r)})^{(\leq r)} \) (for radius \(d(r + 1) \))?

\((1) \implies (2) \)

▷ Let \(v \in V(G) \) and \(S \subseteq B^{(\leq r)}_{G}(v) \).

If \(|S| > t^r \), there is an \((\leq r) \)-subdivided \(t \)-star in \(B^{(\leq r)}_{G}(v) \) with root \(v \) and leaves \(s_1, \ldots, s_t \in S \).

▷ \(\{|\text{"candidate roots" for } T^{i}_{k}, \text{ as an } r\text{-shallow topological minor in } B^{(\leq r)}_{G}(v)\}| \leq f(d, r, k) \)
How to prove the alternation collapse?

Collapse of FO alternation hierarchy

Let C be a graph class of tree rank d. Every formula φ is equivalent on C to a formula ψ of alternation rank $3d$.

Proof sketch:

• Gaifman’s Locality Theorem.
 "for every FO-formula φ, there is a radius r such that the satisfaction of φ in G only depends on FO-definable properties of radius-r balls in $G".

Let $d \in \mathbb{N}$. The following conditions are equivalent:

1. C has (elementary) tree rank d.
2. There is an (elementary) function $f: \mathbb{N} \to \mathbb{N}$ such that for every $r \in \mathbb{N}$, Splitter wins the $f(r)$-batched splitter game of radius r in at most d rounds, on every $G \in C$.

• Apply induction on every radius-r ball in G, after removing $f(r)$ vertices.
How to prove the alternation collapse?

Collapse of FO alternation hierarchy

Let C be a graph class of **tree rank** d.
Every formula φ is equivalent on C to a formula ψ of **alternation rank** $3d$.

Proof sketch:

• Gaifman’s Locality Theorem.
How to prove the alternation collapse?

Collapse of FO alternation hierarchy

Let C be a graph class of tree rank d.
Every formula φ is equivalent on C to a formula ψ of alternation rank $3d$.

Proof sketch:

- Gaifman’s Locality Theorem.
 “for every FO-formula φ, there is a radius r such that
the satisfaction of φ in G only depends on FO-definable properties of radius-r balls in G.”
How to prove the alternation collapse?

Collapse of FO alternation hierarchy

Let C be a graph class of tree rank d.
Every formula φ is equivalent on C to a formula ψ of alternation rank $3d$.

Proof sketch:

• Gaifman’s Locality Theorem.
 “for every FO-formula φ, there is a radius r such that
 the satisfaction of φ in G only depends
 on FO-definable properties of radius-r balls in G.”

Let $d \in \mathbb{N}$. The following conditions are equivalent:

1. C has (elementary) tree rank d,
2. There is an (elementary) function $f : \mathbb{N} \rightarrow \mathbb{N}$ such that for every $r \in \mathbb{N}$
 Splitter wins the $f(r)$-batched splitter game of radius r in at most d rounds, on every $G \in C$.
How to prove the alternation collapse?

Collapse of FO alternation hierarchy

Let C be a graph class of tree rank d.
Every formula φ is equivalent on C to a formula ψ of alternation rank $3d$.

Proof sketch:

- Gaifman's Locality Theorem.
 “for every FO-formula φ, there is a radius r such that
 the satisfaction of φ in G only depends on FO-definable properties of radius-r balls in G.”

Let $d \in \mathbb{N}$. The following conditions are equivalent:

1. C has (elementary) tree rank d,
2. There is an (elementary) function $f : \mathbb{N} \to \mathbb{N}$ such that for every $r \in \mathbb{N}$
 Splitter wins the $f(r)$-batched splitter game of radius r in at most d rounds, on every $G \in C$.

- Apply induction on every radius-r ball in G, after removing $f(r)$ vertices.
How to do elementary FO model checking?

Compute the "constant alternation rank"-type of the graph, using FO model checking algorithm on bounded expansion classes (which is elementarily-FPT for sentences of constant alternation rank).

The collapse of the FO alternation hierarchy on bounded tree rank classes implies the following:

If two vertices have the same "constant alternation rank"-type, then they have the same q-type.
How to do elementary FO model checking?

Compute the “constant alternation rank”-type of the graph,

using FO model checking algorithm on bounded expansion classes [Dvořák, Král, & Thomas, 2014]

(which is elementarily-FPT for sentences of constant alternation rank).
How to do elementary FO model checking?

Compute the “constant alternation rank”-type of the graph,

using FO model checking algorithm on bounded expansion classes [Dvořák, Král, & Thomas, 2014] (which is elementarily-FPT for sentences of constant alternation rank).

The collapse of the FO alternation hierarchy on bounded tree rank classes implies the following:

If two vertices have the same “constant alternation rank”-type, then they have the same q-type.
Conclusion

Theorem [Gajarský, Pilipczuk, Sokołowski, Stamoulis, Toruńczyk, 2023]
If C has **bounded elementary tree rank**, then FO model checking is **elementarily-FPT** on C.

Corollary
If C excludes a fixed tree as a topological minor, then FO model checking is **elementarily-FPT** on C.

Theorem [Gajarský, Pilipczuk, Sokołowski, Stamoulis, Toruńczyk, 2023]
Assume $\text{AW}[\ast]\neq \text{FPT}$. Let C be a monotone graph class.
If FO model checking is **elementarily-FPT** on C, then C has **bounded tree rank**.

Almost complete characterization of **elementarily-FPT** FO model checking on sparse classes.
Conclusion

Theorem [Gajarský, Pilipczuk, Sokołowski, Stamoulis, Toruńczyk, 2023]
If C has bounded elementary tree rank, then FO model checking is elementarily-FPT on C.

Corollary
If C excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on C.

Theorem [Gajarský, Pilipczuk, Sokołowski, Stamoulis, Toruńczyk, 2023]
Assume $\text{AW[\ast]} \neq \text{FPT}$. Let C be a monotone graph class.
If FO model checking is elementarily-FPT on C, then C has bounded tree rank.

Almost complete characterization of elementarily-FPT FO model checking on sparse classes.

What about dense classes?
Towards dense graph classes

Tree rank of C: the largest number $d \in \mathbb{N}$ such that there is an $r \in \mathbb{N}$ such that $T_d \subseteq \text{TopMinors}_r(C)$.

Rank of C: the largest number $d \in \mathbb{N}$ such that C transduces T_d.

Conjecture: A hereditary graph class C has elementarily-FPT model checking if and only if it has bounded rank.

Conjecture: Let C be a hereditary graph class. C has bounded rank $\iff \exists k \in \mathbb{N}$ such that every ϕ is equivalent on C to a ψ of alternation rank k.
Towards dense graph classes

Tree rank of \mathcal{C}:
the largest number $d \in \mathbb{N}$ such that there is an $r \in \mathbb{N}$ such that $T_d \subseteq \text{TopMinors}_r(\mathcal{C})$.

Conjecture:
A hereditary graph class \mathcal{C} has elementarily-FPT model checking if and only if it has bounded rank.

Conjecture:
Let \mathcal{C} be a hereditary graph class. \mathcal{C} has bounded rank $\iff \exists k \in \mathbb{N}$ such that every ϕ is equivalent on \mathcal{C} to a ψ of alternation rank k.

Towards dense graph classes

Tree rank of \mathcal{C}:
the largest number $d \in \mathbb{N}$ such that there is an $r \in \mathbb{N}$ such that $\mathcal{T}_d \subseteq \text{TopMinors}_r(\mathcal{C})$.

Rank of \mathcal{C}:
the largest number $d \in \mathbb{N}$ such that \mathcal{C} transduces \mathcal{T}_d.

Conjecture:
A hereditary graph class \mathcal{C} has elementarily-FPT model checking if and only if it has bounded rank.
Towards dense graph classes

Tree rank of \mathcal{C}:
the largest number $d \in \mathbb{N}$ such that there is an $r \in \mathbb{N}$ such that $\mathcal{T}_d \subseteq \text{TopMinors}_r(\mathcal{C})$.

Rank of \mathcal{C}:
the largest number $d \in \mathbb{N}$ such that \mathcal{C} transduces \mathcal{T}_d.

Conjecture:
A hereditary graph class \mathcal{C} has elementarily-FPT model checking if and only if it has bounded rank.
Towards dense graph classes

Tree rank of C:
the largest number $d \in \mathbb{N}$ such that there is an $r \in \mathbb{N}$ such that $T_d \subseteq \TopMinors_r(C)$.

Rank of C:
the largest number $d \in \mathbb{N}$ such that C transduces T_d.

Conjecture:
A hereditary graph class C has elementarily-FPT model checking if and only if it has bounded rank.

Conjecture:
Let C be a hereditary graph class. C has bounded rank $\iff \exists k \in \mathbb{N}$ such that every φ is equivalent on C to a ψ of alternation rank k.
A graph class C is **weakly sparse** if it excludes some biclique as a subgraph.
A graph class \mathcal{C} is **weakly sparse** if it excludes some biclique as a subgraph.

Theorem [Gajarský, Pilipczuk, Sokołowski, Stamoulis, Toruńczyk, 2023]

Let \mathcal{C} be a weakly sparse graph class. \mathcal{C} has bounded **tree rank** \iff \mathcal{C} has bounded **rank**.
A graph class C is **weakly sparse** if it excludes some biclique as a subgraph.

Theorem [Gajarský, Pilipczuk, Sokołowski, Stamoulis, Toruńczyk, 2023]

Let C be a weakly sparse graph class. C has bounded tree rank \iff C has bounded rank.

Conjecture:
A hereditary graph class C has elementarily-FPT model checking if and only if it has bounded rank.

Conjecture:
Let C be a hereditary graph class.
C has bounded rank $\iff \exists k \in \mathbb{N}$ such that every φ is equivalent on C to a ψ of alternation rank k.
Merci!