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“P3 is an induced subgraph of G":

first-order logic (FO): IxTy3z (adj(x,y) A adj(y, z) /\ﬁadj(x7z)>

Atomic formulas: x =y, adj(x, y)
Logical connectives: ¢ A9, ¢ Vb, —p. “G has a dominating set of size 3"

Quantifiers: Ix ¢, Vx ¢
Ix13xp3x3 Vy Vie{1,2,3} (Y = x,-\/adj(x,-,y))

FO MoODEL CHECKING
Input: a first-order formula ¢ and a graph G.
Question: G satisfies ¢?

» On general graphs, the problem is AW[*]-hard.

» When is it FPT? i.e., solvable in time f(|¢|,C) - |G|, for some function f and ¢ > 1.
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What is bounded tree rank?

o The class T of all trees has unbounded tree rank.

o T4 has tree rank d.

o If C excludes some tree T as a topological minor, it has tree rank smaller than the depth of T.
o C has bounded degree if and only if C has tree rank 1.

o The class C of graphs of pathwidth d has tree rank exactly d + 1.
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A
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Fact: A graph of minimum degree ¢ contains every tree on ¢ vertices as a subgraph.

bounded tree rank = bounded degeneracy = bounded expansion
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T := tree of depth d and branching/size k.

Tree rank of C:
the least number d € N such that

for every r € N there is k € N s.t. no graph in C contains T,f“rl as an r-shallow topological minor.
V.

Tree rank of C:

the least number d € N such that there is a function f : N — N such that

for every r € N, no graph in C contains de(f)l as an r-shallow topological minor.

Elementary tree rank of C:

the least number d € N such that there is an elementary function ¥ : N — N such that

for every r € N, no graph in C contains T;’(f)l as an r-shallow topological minor.
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If C has bounded elementary tree rank, then FO model checking is elementarily-FPT on C. J

Corollary
If C excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on C.J

Theorem [Gajarsky, Pilipczuk, Sokotowski, Stamoulis, Toruiczyk, 2023]

Assume AW[*]#FPT. Let C be a monotone graph class.
If FO model checking is elementarily-FPT on C, then C has bounded tree rank.

Almost complete characterization of elementarily-FPT FO model checking on sparse classes.
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Collapse of FO alternation hierarchy

Lemma

Let C be a graph class of tree rank d.
Every formula ¢ is equivalent on C to a formula ¢ of alternation rank 3d.

Also, if C has elementary tree rank d, then || is elementary in |¢|.

Iv3v3v3...v3 - [33...3][w...v]---[33...3]

3d alternations

Theorem [Gajarsky, Pilipczuk, Sokotowski, Stamoulis, Toruriczyk, 2023]
Let C be a monotone graph class. The following are equivalent:
@ C has bounded tree rank

o 3k € N such that for every formula ¢, there is an equivalent (on C) formula ¢ of alternation rank k.
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How can the Localiser survive d + 1 rounds in (T;i(+1)(<r (for radius d(r +1))?

1) = (2)
> Let ve V(G) and S € BE)(v).

If |S| > t", there is an (< r)-subdivided t-star in Bégr)(v) with root v and leaves si,...,s; € S.

> |{ “candidate roots” for T}, as an r-shallow topological minor in Bgr)(v)}} < f(d,r k)
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e Gaifman's Locality Theorem.

“for every FO-formula ¢, there is a radius r such that
the satisfaction of ¢ in G only depends on FO-definable properties of radius-r balls in G.”

Let d € N. The following conditions are equivalent:
(1) C has (elementary) tree rank d,

(2) There is an (elementary) function f : N — N such that for every r € N
Splitter wins the f(r)-batched splitter game of radius r in at most d rounds, on every G € C.
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Every formula ¢ is equivalent on C to a formula ¢ of alternation rank 3d.

Proof sketch:

e Gaifman's Locality Theorem.

“for every FO-formula ¢, there is a radius r such that
the satisfaction of ¢ in G only depends on FO-definable properties of radius-r balls in G.”

Let d € N. The following conditions are equivalent:
(1) C has (elementary) tree rank d,

(2) There is an (elementary) function f : N — N such that for every r € N
Splitter wins the f(r)-batched splitter game of radius r in at most d rounds, on every G € C.

e Apply induction on every radius-r ball in G, after removing f(r) vertices.
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How to do elementary FO model checking?

Compute the “constant alternation rank”-type of the graph,

using FO model checking algorithm on bounded expansion classes [Dvorak, Kral, & Thomas, 2014]

(which is elementarily-FPT for sentences of constant alternation rank).
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How to do elementary FO model checking?

Compute the “constant alternation rank”-type of the graph,

using FO model checking algorithm on bounded expansion classes [Dvorak, Kral, & Thomas, 2014]

(which is elementarily-FPT for sentences of constant alternation rank).

The collapse of the FO alternation hierarchy on bounded tree rank classes implies the following:

If two wvertices have the same “constant alternation rank”-type, then they have the same q-type.
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Conclusion

Theorem [Gajarsky, Pilipczuk, Sokotowski, Stamoulis, Toruriczyk, 2023]
If C has bounded elementary tree rank, then FO model checking is elementarily-FPT on C. J

Corollary
If C excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on C.J

Theorem [Gajarsky, Pilipczuk, Sokotowski, Stamoulis, Toruriczyk, 2023]

Assume AW[*]£FPT. Let C be a monotone graph class.
If FO model checking is elementarily-FPT on C, then C has bounded tree rank.

Almost complete characterization of elementarily-FPT FO model checking on sparse classes.
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Theorem [Gajarsky, Pilipczuk, Sokotowski, Stamoulis, Toruriczyk, 2023]

Assume AW[*]£FPT. Let C be a monotone graph class.
If FO model checking is elementarily-FPT on C, then C has bounded tree rank.

Almost complete characterization of elementarily-FPT FO model checking on sparse classes.
What about dense classes?

18/20



Towards dense graph classes

19/20



Towards dense graph classes

Tree rank of C:
the largest number d € N such that there is an r € N such that 74 C TopMinors,(C). J

19/20



Towards dense graph classes

Tree rank of C:
the largest number d € N such that there is an r € N such that 74 C TopMinors,(C). J

Rank of C:
the largest number d € N such that C transduces 7. J

19/20



Towards dense graph classes

Tree rank of C:
the largest number d € N such that there is an r € N such that 74 C TopMinors,(C). J

Rank of C:
the largest number d € N such that C transduces 7. J

Conjecture:
A hereditary graph class C has elementarily-FPT model checking if and only if it has bounded rank.

19/20



Towards dense graph classes

Tree rank of C:
the largest number d € N such that there is an r € N such that 74 C TopMinors,(C). J

Rank of C:
the largest number d € N such that C transduces 7. J

Conjecture:
A hereditary graph class C has elementarily-FPT model checking if and only if it has bounded rank.

Conjecture:
Let C be a hereditary graph class.
C has bounded rank <= 3k € N such that every ¢ is equivalent on C to a v of alternation rank k.
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A graph class C is weakly sparse if it excludes some biclique as a subgraph.
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A graph class C is weakly sparse if it excludes some biclique as a subgraph.

Theorem [Gajarsky, Pilipczuk, Sokotowski, Stamoulis, Toruficzyk, 2023]
Let C be a weakly sparse graph class. C has bounded tree rank <= C has bounded rank. J
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A graph class C is weakly sparse if it excludes some biclique as a subgraph.
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Let C be a weakly sparse graph class. C has bounded tree rank <= C has bounded rank. J
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A hereditary graph class C has elementarily-FPT model checking if and only if it has bounded rank.
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20/20



Merci!



