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Model checking first-order formulas (on graphs)

first-order logic (FO):

Atomic formulas: x = y , adj(x , y)
Logical connectives: φ ∧ ψ, φ ∨ ψ, ¬φ.
Quantifiers: ∃x φ, ∀x φ

“P3 is an induced subgraph of G”:

∃x∃y∃z
(
adj(x , y)∧ adj(y , z)∧¬adj(x , z)

)
“G has a dominating set of size 3”:

∃x1∃x2∃x3 ∀y
∨

i∈{1,2,3}

(
y = xi∨adj(xi , y)

)
FO Model Checking
Input: a first-order formula φ and a graph G .
Question: G satisfies φ?

▶ On general graphs, the problem is AW[*]-hard.

▶ When is it FPT? i.e., solvable in time f (|φ|, C) · |G |c , for some function f and c ≥ 1.

1 / 20



Model checking first-order formulas (on graphs)

first-order logic (FO):

Atomic formulas: x = y , adj(x , y)
Logical connectives: φ ∧ ψ, φ ∨ ψ, ¬φ.
Quantifiers: ∃x φ, ∀x φ

“P3 is an induced subgraph of G”:

∃x∃y∃z
(
adj(x , y)∧ adj(y , z)∧¬adj(x , z)

)
“G has a dominating set of size 3”:

∃x1∃x2∃x3 ∀y
∨

i∈{1,2,3}

(
y = xi∨adj(xi , y)

)

FO Model Checking
Input: a first-order formula φ and a graph G .
Question: G satisfies φ?

▶ On general graphs, the problem is AW[*]-hard.

▶ When is it FPT? i.e., solvable in time f (|φ|, C) · |G |c , for some function f and c ≥ 1.

1 / 20



Model checking first-order formulas (on graphs)

first-order logic (FO):

Atomic formulas: x = y , adj(x , y)
Logical connectives: φ ∧ ψ, φ ∨ ψ, ¬φ.
Quantifiers: ∃x φ, ∀x φ

“P3 is an induced subgraph of G”:

∃x∃y∃z
(
adj(x , y)∧ adj(y , z)∧¬adj(x , z)

)
“G has a dominating set of size 3”:

∃x1∃x2∃x3 ∀y
∨

i∈{1,2,3}

(
y = xi∨adj(xi , y)

)
FO Model Checking
Input: a first-order formula φ and a graph G .
Question: G satisfies φ?

▶ On general graphs, the problem is AW[*]-hard.

▶ When is it FPT? i.e., solvable in time f (|φ|, C) · |G |c , for some function f and c ≥ 1.

1 / 20



Model checking first-order formulas (on graphs)

first-order logic (FO):

Atomic formulas: x = y , adj(x , y)
Logical connectives: φ ∧ ψ, φ ∨ ψ, ¬φ.
Quantifiers: ∃x φ, ∀x φ

“P3 is an induced subgraph of G”:

∃x∃y∃z
(
adj(x , y)∧ adj(y , z)∧¬adj(x , z)

)
“G has a dominating set of size 3”:

∃x1∃x2∃x3 ∀y
∨

i∈{1,2,3}

(
y = xi∨adj(xi , y)

)
FO Model Checking
Input: a first-order formula φ and a graph G .
Question: G satisfies φ?

▶ On general graphs, the problem is AW[*]-hard.

▶ When is it FPT? i.e., solvable in time f (|φ|, C) · |G |c , for some function f and c ≥ 1.

1 / 20



Model checking first-order formulas (on graphs)

first-order logic (FO):

Atomic formulas: x = y , adj(x , y)
Logical connectives: φ ∧ ψ, φ ∨ ψ, ¬φ.
Quantifiers: ∃x φ, ∀x φ

“P3 is an induced subgraph of G”:

∃x∃y∃z
(
adj(x , y)∧ adj(y , z)∧¬adj(x , z)

)
“G has a dominating set of size 3”:

∃x1∃x2∃x3 ∀y
∨

i∈{1,2,3}

(
y = xi∨adj(xi , y)

)
FO Model Checking
Input: a first-order formula φ and a graph G .
Question: G satisfies φ?

▶ On general graphs, the problem is AW[*]-hard.

▶ When is it FPT? i.e., solvable in time f (|φ|, C) · |G |c , for some function f and c ≥ 1.

1 / 20



The three components of the model checking question

[Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, & Toruńczyk, 2023]
[Dreier, Mählmann, & Siebertz, 2023]

[Bonnet, Dreier, Gajarský, Kreutzer, Mählmann, Simon, & Toruńczyk, 2022]
[Bonnet, Kim, Thomassé, & Watrigant, 2022]

[Hliněný, Pokrývka, & Roy, 2019]
[Gajarský, Kreutzer, Nešeťril, Ossona de Mendez, Pilipczuk, Siebertz, & Toruńczyk, 2018]

[Grohe, Kreutzer, & Siebertz, 2017]
[Eickmeyer & Kawarabayashi, 2017]

[Gajarský, Hliněný, Lokshtanov, Obdržálek, & Ramanujan, 2016]
[Dvǒrák, Krá̌l, & Thomas, 2011]

[Dawar, Grohe, & Kreutzer, 2007]
[Flum & Grohe, 2001]
[Frick & Grohe, 2001]

[Seese, 1996]

Extensions of FO ?

FO model checking is FPT on C.

How general C can be?

[Schirrmacher, Siebertz, Stamoulis, Thilikos, & Vigny, 2023]
[Golovach, Stamoulis, & Thilikos, 2023]
[Fomin, Golovach, Sau, Stamoulis, & Thilikos, 2023]
[Pilipczuk, Schirrmacher, Siebertz, Toruńczyk, & Vigny, 2022]
[Schirrmacher, Siebertz, & Vigny, 2022]
[Nešeťril, Ossona de Mendez, & Siebertz, 2022]
[Grange, 2021]
[Berkholz, Keppeler, & Schweikardt, 2018]
[Grohe & Schweikardt, 2018]
[van den Heuvel, Kreutzer, Pilipczuk, Quiroz, Rabinovich, & Siebertz, 2017]

What about
“elementarily-FPT”?
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[Nešeťril, Ossona de Mendez, & Siebertz, 2022]
[Grange, 2021]
[Berkholz, Keppeler, & Schweikardt, 2018]
[Grohe & Schweikardt, 2018]
[van den Heuvel, Kreutzer, Pilipczuk, Quiroz, Rabinovich, & Siebertz, 2017]

What about
“elementarily-FPT”?

2 / 20



The three components of the model checking question
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[Gajarský, Kreutzer, Nešeťril, Ossona de Mendez, Pilipczuk, Siebertz, & Toruńczyk, 2018]
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“Elementarily-FPT” programme

What is the (parametric) dependence on |φ| in the running time of a model checking algorithm?

22
··
2|φ|︸ ︷︷ ︸

height g(|φ|)

·|G |c , for some constant c ≥ 1,

even for the class T of trees. [Frick & Grohe, 2002]

Task: Improve the (parametric) dependence on |φ| in the running time.

FO Model Checking (on C)
Input: a first-order formula φ and a graph G ∈ C
Question: G satisfies φ?

Meta-parameter: hC

Elementarily-FPT: running time 22
··
2|φ|︸ ︷︷ ︸

height g(hC)

·|G |c
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elementary function: can be formed from

- successor function

- addition/subtraction/multiplication

using

* compositions,

* projections,

* bounded additions/multiplications.

Observation:

a function f is bounded by an elementary function
⇐⇒

it is bounded by an h-fold exponential function for some fixed h

Elementarily-FPT: running time 22
··
2|φ|︸ ︷︷ ︸

height g(hC)

·|G |c
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The map of the elementarily-FPT universe

Bounded pathwidth
[Lampis, 2023]

Bounded treedepth
[Gajarský & Hlinený, 2015]

Bounded degree
[Frick & Grohe, 2002]

?
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What bounded degree and bounded pathwidth have in common?

Exclusion of a tree as a topological minor

Elementary model checking for classes excluding a tree T as a topological minor?

If yes, how more general can we get?
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Definitions:

H(≤r) := replace every edge of H with a path of at most r internal vertices.

H is an r-shallow topological minor of G , if H(≤r) ⊆ G .

TopMinorsr (C) := {H | ∃G ∈ C : H is an r -shallow topological minor of G}

Td := class of all trees of depth d .
(

has depth 2.

)
• The tree rank of a graph class C: max{d ∈ N | ∃r ∈ N : Td ⊆ TopMinorsr (C)}.
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What is bounded tree rank?

The class T of all trees has unbounded tree rank.

Td has tree rank d .

If C excludes some tree T as a topological minor, it has tree rank smaller than the depth of T .

C has bounded degree if and only if C has tree rank 1.

The class C of graphs of pathwidth d has tree rank exactly d + 1.
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Is this just excluding a tree as a topological minor?

NO

. . .

. . .

Every tree as a topological minor and tree rank 2
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excluding a tree as a topological minor

bounded tree rank

Fact: A graph of minimum degree δ contains every tree on δ vertices as a subgraph.

bounded tree rank =⇒ bounded degeneracy =⇒ bounded expansion
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T d
k := tree of depth d and branching/size k .

Tree rank of C:
the least number d ∈ N such that
for every r ∈ N there is k ∈ N s.t. no graph in C contains T d+1

k as an r -shallow topological minor.

Tree rank of C:
the least number d ∈ N such that there is a function f : N → N such that
for every r ∈ N, no graph in C contains T d+1

f (r) as an r -shallow topological minor.

Elementary tree rank of C:
the least number d ∈ N such that there is an elementary function f : N → N such that

for every r ∈ N, no graph in C contains T d+1
f (r) as an r -shallow topological minor.
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Elementary FO model checking on sparse classes

Theorem [Gajarský, Pilipczuk, Soko lowski, Stamoulis, Toruńczyk, 2023]

If C has bounded elementary tree rank, then FO model checking is elementarily-FPT on C.

Corollary

If C excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on C.

Theorem [Gajarský, Pilipczuk, Soko lowski, Stamoulis, Toruńczyk, 2023]

Assume AW[*] ̸=FPT. Let C be a monotone graph class.
If FO model checking is elementarily-FPT on C, then C has bounded tree rank.

Almost complete characterization of elementarily-FPT FO model checking on sparse classes.

12 / 20



Elementary FO model checking on sparse classes
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Collapse of FO alternation hierarchy

Lemma

Let C be a graph class of tree rank d .
Every formula φ is equivalent on C to a formula ψ of alternation rank 3d .

Also, if C has elementary tree rank d , then |ψ| is elementary in |φ|.

∃∀∃∃∀∃∀∃ . . . ∀∃ → ∃∃ . . . ∃ ∀∀ . . . ∀ · · · ∃∃ . . . ∃︸ ︷︷ ︸
3d alternations

Theorem [Gajarský, Pilipczuk, Soko lowski, Stamoulis, Toruńczyk, 2023]

Let C be a monotone graph class. The following are equivalent:

C has bounded tree rank

∃k ∈ N such that for every formula φ, there is an equivalent (on C) formula ψ of alternation rank k.
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Structural characterization of bounded tree rank

m-batched splitter game of radius r :

Two players: Splitter and Localizer. In each round of the game:

Localizer picks v ∈ V (G ) and restricts to G ′ := B r
G (v).

Splitter deletes at most m vertices from G ′

and the game continues on the obtained graph.

If no vertices remain, Splitter wins the game.

G

v
r

G ′

Lemma

Let d ∈ N. The following conditions are equivalent:

(1) C has (elementary) tree rank d ,

(2) There is an (elementary) function f : N → N such that for every r ∈ N
Splitter wins the f (r)-batched splitter game of radius r in at most d rounds, on every G ∈ C.
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Lemma

Let d ∈ N. The following conditions are equivalent:

(1) C has (elementary) tree rank d ,

(2) There is an (elementary) function f : N → N such that for every r ∈ N
Splitter wins the f (r)-batched splitter game of radius r in at most d rounds, on every G ∈ C.

Proof sketch:

(2) =⇒ (1)

How can the Localiser survive d + 1 rounds in (T d+1
f (r) )

(≤r) (for radius d(r + 1))?

(1) =⇒ (2)

▷ Let v ∈ V (G ) and S ⊆ B
(≤r)
G (v).

If |S | > tr , there is an (≤ r)-subdivided t-star in B
(≤r)
G (v) with root v and leaves s1, . . . , st ∈ S .

▷
∣∣{“candidate roots” for T i

k′ as an r -shallow topological minor in B
(≤r)
G (v)}

∣∣ ≤ f (d , r , k)
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How to prove the alternation collapse?

Collapse of FO alternation hierarchy

Let C be a graph class of tree rank d .
Every formula φ is equivalent on C to a formula ψ of alternation rank 3d .

Proof sketch:

• Gaifman’s Locality Theorem.

“for every FO-formula φ, there is a radius r such that
the satisfaction of φ in G only depends on FO-definable properties of radius-r balls in G .”

Let d ∈ N. The following conditions are equivalent:

(1) C has (elementary) tree rank d ,

(2) There is an (elementary) function f : N → N such that for every r ∈ N
Splitter wins the f (r)-batched splitter game of radius r in at most d rounds, on every G ∈ C.

• Apply induction on every radius-r ball in G , after removing f (r) vertices.
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How to do elementary FO model checking?

Compute the “constant alternation rank”-type of the graph,

using FO model checking algorithm on bounded expansion classes [Dvǒrák, Král, & Thomas, 2014]

(which is elementarily-FPT for sentences of constant alternation rank).

The collapse of the FO alternation hierarchy on bounded tree rank classes implies the following:

If two vertices have the same “constant alternation rank”-type, then they have the same q-type.
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Conclusion

Theorem [Gajarský, Pilipczuk, Soko lowski, Stamoulis, Toruńczyk, 2023]

If C has bounded elementary tree rank, then FO model checking is elementarily-FPT on C.

Corollary

If C excludes a fixed tree as a topological minor, then FO model checking is elementarily-FPT on C.

Theorem [Gajarský, Pilipczuk, Soko lowski, Stamoulis, Toruńczyk, 2023]

Assume AW[*] ̸=FPT. Let C be a monotone graph class.
If FO model checking is elementarily-FPT on C, then C has bounded tree rank.

Almost complete characterization of elementarily-FPT FO model checking on sparse classes.

What about dense classes?
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Theorem [Gajarský, Pilipczuk, Soko lowski, Stamoulis, Toruńczyk, 2023]
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Towards dense graph classes

Tree rank of C:
the largest number d ∈ N such that there is an r ∈ N such that Td ⊆ TopMinorsr (C).

Rank of C:
the largest number d ∈ N such that C transduces Td .

Conjecture:
A hereditary graph class C has elementarily-FPT model checking if and only if it has bounded rank.

Conjecture:
Let C be a hereditary graph class.
C has bounded rank ⇐⇒ ∃k ∈ N such that every φ is equivalent on C to a ψ of alternation rank k.
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A graph class C is weakly sparse if it excludes some biclique as a subgraph.

Theorem [Gajarský, Pilipczuk, Soko lowski, Stamoulis, Toruńczyk, 2023]

Let C be a weakly sparse graph class. C has bounded tree rank ⇐⇒ C has bounded rank.

Conjecture:
A hereditary graph class C has elementarily-FPT model checking if and only if it has bounded rank.

Conjecture:
Let C be a hereditary graph class.
C has bounded rank ⇐⇒ ∃k ∈ N such that every φ is equivalent on C to a ψ of alternation rank k.
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Merci!


